0000000001067743

AUTHOR

J Stella

Comprehensive Biomaterials, Chapter 94 “The Mechanics of Native and Engineered Cardiac Soft Tissue”.

research product

Characterization of the complete fiber network topology of planar fibrous tissues and scaffolds

Understanding how engineered tissue scaffold architecture affects cell morphology, metabolism, phenotypic expression, as well as predicting material mechanical behavior has recently received increased attention. In the present study, an image-based analysis approach that provides an automated tool to characterize engineered tissue fiber network topology is presented. Micro-architectural features that fully defined fiber network topology were detected and quantified, which include fiber orientation, connectivity, intersection spatial density, and diameter. Algorithm performance was tested using scanning electron microscopy (SEM) images of electrospun poly(ester urethane)urea (ES-PEUU) scaffo…

research product

A Method to Extract the Complete Fiber Network Topology of Planar Fibrous Tissues and Scaffolds.

Improving fabrication protocols and design strategies, investigating on how scaffold architecture affects cell morphology, metabolism and phenotypic expression, predicting mechanical behaviors, have increasingly become crucial goals in the development of engineered tissue scaffolds. In the present study, an image-based analysis approach that provides an automatic tool to fully characterize engineered tissues fiber network topology was developed. The following micro architectural features are detected: fiber angle distribution, fiber connectivity, fiber overlap spatial density, fiber diameter. In order to demonstrate the potential of this approach Electrospun poly(ester urethane)urea (ES-PEU…

research product