0000000001067786

AUTHOR

Dario Cricchio

Nanoring as logic gate and memory mass device

We study the application of one nanoring driven by a laser field in different states of polarization in logic circuits. In particular we show that assigning boolean values to different state of the incident laser field and to the emitted signals, we can create logic gates such as OR, XOR and AND. we also show the possibility to make logic circuits such as half-adder and full-adder using one and two nanoring respectively. Using two nanorings we made tho Toffoli gate. Finally we use the final angular momentum acquired by the eelctron to store information and hence show the possibility to use and array of nanorings as a mass device.

research product

Nanorings driven by a laser field

We present the dynamics of an electron constrained over an 1D ring with radius of 0.142 nm driven by a laser field. The temporal evolution of the system is evaluated by a semi-analytical solution of the full quantum time dependent Schr¨odinger equation. In our calculation the gap energy between the ground and the first excited state of the nanoring is three times the photon energy laser (0.63 eV) and the laser intensity is 4·1014 W/cm2 . Our analysis is performed by considering different polarization states of the incident laser. Our attention is mainly focused on the study of the High Harmonic Generation (HHG), the energy and the angular momentum absorbed by the driven system. We observe 1…

research product

Momentum partition between constituents of exotic atoms during laser-induced tunneling ionization

The tunneling ionization of exotic atoms such as muonic hydrogen, muonium, and positronium in a strong laser field of circular polarization is investigated, taking into account the impact of the motion of the center of mass on the the tunneling ionization dynamics. The momentum partition between the ionization products is deduced. The effect of the center-of-mass motion for the momentum distribution of the ionization components is determined. The effect scales with the ratio of the electron (muon) to the atomic core masses and is nonnegligible for exotic atoms, while being insignificant for common atoms. It is shown that the electron (muon) momentum shift during the under-the-barrier motion…

research product

Laser driven quantum rings: one byte logic gate implementation

We study the effect of the carrier-envelope-phase (CEP) on the high harmonic generation (HHG) from a quantum ring driven by two short orthogonal lasers polarized along the x and y axes. In particular, by varying only the phase of the laser polarized along y it is possible to control the intensity of the emitted harmonics. In fact, we show that the system can efficiently emit harmonics if the laser polarized along y is small and that the cut-off of the spectra can be controlled by changing the phase or the intensity ratio between the two lasers. The wavelet analysis of the emitted harmonics and the time dependence of the angular momentum and of the energy acquired by the electron show that t…

research product

Wavelet analysis and HHG in nanorings: their applica-tions in logic gates and memory mass devices

We study the application of one nanoring driven by a laser field in different states of polarization in logic circuits. In particular we show that assigning Boolean values to different states of the incident laser field and to the emitted signals, we can create logic gates such as OR, XOR and AND. We also show the possibility of making logic circuits such as half-adder and full-adder using one and two nanorings respectively. Using two nanorings we made the Toffoli gate. Finally we use the final angular momentum acquired by the electron to store information and hence show the possibility of using an array of nanorings as a mass memory device.

research product

Nanorings driven by strong laser fields: dynamics and applications

research product

Generazione d'armoniche da parte di fullereni

research product

High-order-harmonic generation in dimensionally reduced systems

The time-dependent wave function of a nanoring driven by a laser field is obtained by exploiting the symmetries inherent to the system and used for studying the properties of the electromagnetic radiation emitted by the nanoring as a function of the polarization state of the laser. The diffused radiation has the characteristics of high-order-harmonic generation. For a noncircularly polarized laser field an extension of the expected cutoff position is evident, indicating that nanorings are efficient sources of radiation. The polarization state of the emitted harmonics can be opportunely controlled by varying the parameters of the pump field. The profile of the absorbed angular moment shows t…

research product

Quantum Ring in a Magnetic Field: High Harmonic Generation and NOT Logic Gate

The effect of a static magnetic field on the high harmonic generation (HHG) from a quantum ring driven by one laser polarized along the x-axis is studied. The spin polarization (Formula presented.) and the temporal emission of the harmonics are studied by varying the intensity of the magnetic field and it is shown how these results have a significant technological impact in computer technology; in fact a boolean algebra can be implemented by assigning 0 and 1 values to low and high pulse intensities of the emitted harmonics and logic gates like the NOT can be created.

research product

High-order harmonic generation in fullerenes using few- and multi-cycle pulses of different wavelengths

We present the results of experimental and theoretical studies of high-order harmonic generation (HHG) in plasmas containing fullerenes using pulses of different duration and wavelength. We find that the harmonic cutoff is extended in the case of few-cycle pulses (3.5 fs, 29th harmonic) compared to longer laser pulses (40 fs, 25th harmonic) at the same intensity. Our studies also include HHG in fullerenes using 1300 and 780 nm multicycle (35 and 40 fs) pulses. For 1300 nm pulses, an extension of the harmonic cutoff to the 41st order was obtained, with a decrease in conversion efficiency that is consistent with theoretical predictions based on wave packet spreading for single atoms. Theoreti…

research product

Graphene in strong laser field: experiment and theory

The interaction of graphene nanoparticles and strong 64 fs pulses is examined. We demonstrate high-order harmonic generation in the plasma contained in crumpled sheets of graphene. The morphological studies of the debris of ablated graphene, application of single-color and two-color pumps of graphene-containing plasma, and theoretical consideration of the high-order harmonic generation in this medium are presented.

research product

Electrons on a spherical surface: Physical properties and hollow spherical clusters

We discuss the physical properties of a noninteracting electron gas constrained to a spherical surface. In particular we consider its chemical potentials, its ionization potential, and its electric static polarizability. All these properties are discussed analytically as functions of the number $N$ of electrons. The trends obtained with increasing $N$ are compared with those of the corresponding properties experimentally measured or theoretically evaluated for quasispherical hollow atomic and molecular clusters. Most of the properties investigated display similar trends, characterized by a prominence of shell effects. This leads to the definition of a scale-invariant distribution of magic n…

research product

A paradigm of fullerene

We study the dynamics of an electron constrained over the surface of a rigid sphere, with geometrical parameters similar to those of the C60 fullerene, embedded in a low intensity linearly polarized laser field. The model is shown to emit odd harmonics of the laser even at very low field intensity. For more intense laser fields, the spectrum presents odd harmonics and hyper-Raman lines shaped in a broad plateau. The spectrum of the model is compared to that theoretically obtained by other authors for more realistic models of C60. It is concluded that the model can be used as a paradigm for mesoscopic molecules in the fullerene family, particularly in practical applications where it is conve…

research product

Harmonic generation from nanorings driven by a two-color laser field

We study the high harmonic generation and the polarization of the harmonics emitted by a nanoring driven by two laser fields of angular frequency ?1 and ?2, with ?2?=?2?1, and ?1 resonant between the ground and the first excited state. We show that by varying parameters, such as laser intensity, photon energy and the delay between the two laser pulses, we can control the number of harmonics and the polarization of the radiation. In particular we show that with this choice of two-laser photon frequency rate we obtain more harmonics with respect to other configurations. We also calculated the average absorbed energy and the average angular momentum acquired by the electron as a function of th…

research product

Dynamic clock generator and memory mass device using a quantum ring driven by three-color laser fields

We study the behaviour and applications of a quantum ring (QR) under a three-color laser field. In particular we study the emission of harmonics and their temporal evolution through wavelets. These results suggest the use of QR for three important applications: (1) generation of single short pulses, (2) creation of a variable clock generator, (3) a memory mass device through the angular momentum acquired by the electron.

research product

Fullerenides: properties and high harmonic generation

research product

Classical chaos and harmonic generation in laser driven nanorings

A quantum ring driven by an intense laser field emits light in the form of high-harmonic radiation resulting from the strong acceleration experienced by the active electrons forced to move on a curved trajectory. The spectrum of the emitted light is rich and strongly dependent on the parameters of the problem. In order to investigate the physical origin of such variability, we focus on the seemingly simple problem of a laser-driven charge constrained to a ring from a classical standpoint. As it turns out, the dynamics of such a classical electron is governed by a nonlinear equation which results into a chaotic motion - by nature depending on the initial conditions in an unpredictable way. O…

research product

Nanoring as logic gate and memory mass device - Poster

research product