0000000001068583
AUTHOR
Mohammad Aghahadi
Physical modeling of heat and moisture transfer in wet bio-sourced insulating materials.
Simultaneous heat and moisture transfers in bio-sourced insulating materials are significant phenomena in thermal metrology. The present study focuses on these phenomena by experimental and numerical approaches based on the asymmetric hot-plate method. In this paper, a bio-sourced insulating material based on flax fibers is developed. The thermal and hygric properties of the sample are then investigated in the humid atmosphere. The temperature is maintained at 30 °C, and the relative humidity varies between 30% and 90% RH. A physics-based model of simultaneous heat and moisture transfer is developed for thermal conductivity estimation. This model is discretized with finite difference method…
Experimental study and physical modeling of simultaneous heat and moisture transfer in bio-sourced insulating materials.
The conventional heat transfer models are not sufficiently suitable for thermal characterization of bio-sourced thermal insulating materials due to their strongly hydrophilic nature. The proposed work in this PhD thesis aims to answer this problem with experimental and theoretical approaches of coupled heat-moisture transfers. In the experimental approach, a thermal insulating material based on Flax Fiber Felt (FFF) is developed and then characterized at different hygrometric conditions with an asymmetric hot plate device. The humidity diffusion characterization of the samples is done using the GAB, GDW and Park theoretical moisture adsorption isotherm models. In the theoretical approach, a…