0000000001068670

AUTHOR

Sébastien Blassiau

Micromechanics, damage and life prediction of carbon fibre composite pressure vessels

31 mai-3 juin 2004; International audience; A study by 3D finite element analysis has revealed the changes in the stress field around broken fibres in cfrp by considering the evolution of representative elementary volumes of the composite for both elastic and viscoelastic matrices and the effects of debonding. The viscoelastic behaviour of the matrix does not change the mechanism of load transfer but introduces time as a parameter. At a constant load, the relaxation of the matrix increases the coefficients of load transfer around broken fibres and causes new failures of fibres. This analysis relates the acoustic emission detected during steady loading to fibre failures. In this way a model …

research product

Micromechanisms of load transfer in a unidirectional carbon fibre–reinforced epoxy composite due to fibre failures. Part 1: Micromechanisms and 3D analysis of load transfer: The elastic case

This study gives a detailed analysis of load distributions around fibre breaks in a composite and the mechanisms involved in load transfer. In contrast to other studies reported in the literature the analysis considers different configurations of composite damage from the failure of a few fibres to the failure of many. The model considers the elastic case with and without debonding at the broken fibre/matrix interface. In this way, the usual limitations of the finite element approach are overcome so as to take into account the numbers and interactions of broken fibres whilst maintaining an evaluation of the various fields involved, in particular the stress fields associated with fibre failu…

research product

Three-dimensional analysis of load transfer micro-mechanisms in fibre/matrix composites

International audience; This study gives a detailed analysis of load distributions around fibre breaks in a composite. In contrast to other studies reported in the literature, the analysis considers different configurations of composite damage from the failure of a few to the failure of many fibres. The model considers three types of matrix behaviours (elastic, elastic–plastic and viscoelastic) with or without debonding at the broken fibre/matrix interface. In this way, the usual limitations of the finite element approach are overcome so as to take into account the number and interactions of broken fibres whilst maintaining an evaluation of the various fields (stresses in particular).

research product

Prédiction de la contrainte de rupture de composites unidirectionnels et suivi de l'accumulation de ruptures de fibres

research product

Micromechanisms of load transfer in a unidirectional carbon fibre–reinforced epoxy composite due to fibre failures. Part 2: Influence of viscoelastic and plastic matrices on the mechanisms of load transfer

A local three-dimensional (3D) finite element analysis (FEA), of the mechanisms governing composite damage (in the region around a fibre break), has been carried out. The model considers viscoelastic and plastic matrix behaviours with and without debonding at the broken fibre/matrix interface. The finite element analysis has shown that even a simple viscoelastic law describing the behaviour of the epoxy resin leads to an increasing load on the neighbouring intact fibres, as a function of time. The plastic behaviour of the matrix has been shown to have consequences on reloading after unloading. In contrast to other studies reported in the literature, the calculations were carried out on diff…

research product

Micromechanisms of load transfer in a unidirectional carbon fibre-reinforced epoxy composite due to fibre failures: Part 3. Multiscale reconstruction of composite behaviour

International audience; This third article describes a multiscale process which takes into account the most important microscopic phenomena associated with composite degradation, including fibre fractures and interfacial debonding, overloading of fibres neighbouring a fibre break as well as viscoelastic behaviour of the matrix. The results have been used to accurately predict the macroscopic failure of unidirectional carbon fibre-reinforced epoxy and quantify damage accumulation in pressure vessels made of the same material. The approach described has allowed the acoustic emission activity resulting from fibres breaks to be evaluated and shown how the residual lifetimes of such vessels, whe…

research product

A methodology for the control of the residual lifetimes of carbon fibre reinforced composite pressure vessels

International audience; Pressure vessels must be periodically proof tested. Traditional techniques for metal vessels are inapplicable for composite vessels as the latter do not break by crack propagation so that the reasoning behind the traditional testing procedures is not appropriate. Damage accumulation leading to the degradation of a composite vessel is by fibre failure. Fibres show a wide distribution in strengths and loading a composite inevitably breaks some. The method which has been developed is supported by an analysis of delayed fibre failure due to the relaxation of the resin around fibre breaks. This provokes overloading of intact fibres neighbouring breaks. The time until a cr…

research product