0000000001068834

AUTHOR

R. Di Raffaele

The FIGARO II experiment: a general outline of the mission and the principal scientific results

The FIGARO II (French Italian Gamma-Ray Observatory) experiment has been launched successfully three times: in July 1986 from Milo (Trapani), in November 1988 from Charleville (Australia) and in July 1990 again from Milo. In the first flight the observational program was limited to the Crab pulsar PSR0531+21 only because of a telemetry failure: the high sensitivity of FIGARO II allowed an accurate study of the pulse shape as well as a phase-resolved spectroscopy. It was also possible to evaluate the dispersion measure of the Crab pulsar at the flight date from the time delay between gamma-ray and radio pulses. The major results of the second flight were a stringent upper limit to the low-en…

research product

The atmospheric nightglow in the 300– wavelength

Abstract The balloon-borne experiment, named BAckground BYpass (BABY) belongs to a wider program that has as its final goal the detection and study of high-energy cosmic rays from space (satellite, Space Station). An information of fundamental importance for this class of projects concerns the nighttime background light. The instrument designed to detect fluorescence photons is basically composed of two collimated photomultipliers: a single photon-counting PMT and a charge integration PMT. We briefly report the details of the design, operation and performance of the detector, which was designed and completely built at the IFCAI–CNR Institute in Palermo. Preliminary analysis and results of t…

research product

FIGARO IV: Large-area balloon-borne telescope to study rapid time variabilities in the gamma-ray sources at energies above 50 MeV

We present a new γ-ray telescope based on the Limited Streamer Tube technology, used as tracking chambers to detect photons above 100 MeV. This technique allows to obtain very large sensitive areas (16 m2 in our experiment), together with a good angular resolution for payloads embarcable in high-altitude balloon flights. The capability to collect a large signal in a short exposure time makes the telescope particularly suitable and competitive with respect to satellite-based detectors for studying both periodic and random time variabilities on galactic and extragalactic γ-ray sources.

research product