0000000001070692

AUTHOR

Georg Zoidl

showing 2 related works from this author

Reduced presynaptic efficiency of excitatory synaptic transmission impairs LTP in the visual cortex of BDNF-heterozygous mice

2006

The neurotrophin brain-derived neurotrophic factor (BDNF) plays an important role in neuronal survival, axonal and dendritic growth and synapse formation. BDNF has also been reported to mediate visual cortex plasticity. Here we studied the cellular mechanisms of BDNF-mediated changes in synaptic plasticity, excitatory synaptic transmission and long-term potentiation (LTP) in the visual cortex of heterozygous BDNF-knockout mice (BDNF(+/-)). Patch-clamp recordings in slices showed an approximately 50% reduction in the frequency of miniature excitatory postsynaptic currents (mEPSCs) compared to wild-type animals, in the absence of changes in mEPSC amplitudes. A presynaptic impairment of excita…

N-MethylaspartatePatch-Clamp TechniquesTime FactorsLong-Term PotentiationPresynaptic TerminalsAMPA receptorIn Vitro TechniquesSynaptic TransmissionMicePostsynaptic potentialQuinoxalinesExcitatory Amino Acid AgonistsAnimalsalpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic AcidVisual CortexMice KnockoutNeuronsBrain-derived neurotrophic factorDose-Response Relationship DrugPost-tetanic potentiationChemistryBrain-Derived Neurotrophic FactorGeneral NeuroscienceDose-Response Relationship RadiationLong-term potentiationElectric StimulationSynaptic fatigueAnimals Newbornnervous systemSynaptic plasticityExcitatory postsynaptic potentialCalciumExcitatory Amino Acid AntagonistsNeuroscienceEuropean Journal of Neuroscience
researchProduct

Complexity of gap junctions between horizontal cells of the carp retina.

2016

In the vertebrate retina, horizontal cells (HCs) reveal homologous coupling by gap junctions (gj), which are thought to consist of different connexins (Cx). However, recent studies in mouse, rabbit and zebrafish retina indicate that individual HCs express more than one connexin. To provide further insights into the composition of gj connecting HCs and to determine whether HCs express multiple connexins, we examined the molecular identity and distribution of gj between HCs of the carp retina. We have cloned four carp connexins designated Cx49.5, Cx55.5, Cx52.6 and Cx53.8 with a close relationship to connexins previously reported in HCs of mouse, rabbit and zebrafish, respectively. Using in s…

0301 basic medicineFish ProteinsCarpsImmunoelectron microscopyBlotting WesternConnexinIn situ hybridizationRetinal Horizontal Cellsbehavioral disciplines and activitiesPolymerase Chain ReactionConnexins03 medical and health sciencesMice0302 clinical medicineCell Line TumormedicineAnimalsProtein IsoformsElectrical synapseAmino Acid SequenceCarpMicroscopy ImmunoelectronZebrafishIn Situ HybridizationRetinabiologyGeneral NeuroscienceGap junctionGap JunctionsAnatomyDendritesbiology.organism_classificationImmunohistochemistryAxonsCell biology030104 developmental biologymedicine.anatomical_structureembryonic structuressense organsSequence Alignment030217 neurology & neurosurgeryNeuroscience
researchProduct