Chip for dielectrophoretic microbial capture, separation and detection II: experimental study
Abstract In our previous paper we have modelled a dielectrophoretic force (DEP) and cell particle behavior in a microfluidic channel (Weber MU et al 2023 Chip for dielectrophoretic microbial capture, separation and detection I: theoretical basis of electrode design Nanotechnology this issue). Here we test and confirm the results of our modeling work by experimentally validating the theoretical design constraints of the ring electrode architecture. We have compared and tested the geometry and particle capture and separation performance of the two separate electrode designs (the ring and dot electrode structures) by investigating bacterial motion in response to the applied electric field. We …