0000000001076712
AUTHOR
Jukka Puolakka
DIFFERENTIAL INFLUENCE OF PERIPHERAL AND SYSTEMIC SEX STEROIDS ON SKELETAL MUSCLE QUALITY IN PRE- AND POSTMENOPAUSAL WOMEN.
Aging is associated with gradual decline of skeletal muscle strength and mass often leading to diminished muscle quality. This phenomenon is known as sarcopenia and affects about 30% of the over 60-year-old population. Androgens act as anabolic agents regulating muscle mass and improving muscle performance. The role of female sex steroids as well as the ability of skeletal muscle tissue to locally produce sex steroids has been less extensively studied. We show that despite the extensive systemic deficit of sex steroid hormones in postmenopausal compared to premenopausal women, the hormone content of skeletal muscle does not follow the same trend. In contrast to the systemic levels, muscle t…
Muscular transcriptome in postmenopausal women with or without hormone replacement.
The loss of muscle mass and strength with aging is well characterized, but our knowledge of the molecular mechanisms underlying the development of sarcopenia remains incomplete. Although menopause is often accompanied with first signs of age-associated changes in muscle structure and function, the effects of hormone replacement therapy (HRT) or menopause-related decline in estrogen production in the muscles of postmenopausal women is not well understood. Furthermore the knowledge of the global transcriptional changes that take place in skeletal muscle in relation to estrogen status has thus far been completely lacking. We used a randomized double-blinded study design together with an explor…
Global gene expression profiles in skeletal muscle of monozygotic female twins discordant for hormone replacement therapy
Aging is accompanied by inexorable loss of muscle tissue. One of the underlying causes for this is the massive change in the hormonal milieu of the body. The role of a female sex steroid – estrogen – in these processes is frequently neglected, although the rapid decline in its production coincides with a steep deterioration in muscle performance. We recruited 54- to 62-year-old monozygotic female twin pairs discordant for postmenopausal hormone replacement therapy (HRT, n = 11 pairs; HRT use 7.3 ± 3.7 years) from the Finnish Twin Cohort to investigate the association of long-term, estrogen-based HRT with skeletal muscle transcriptome. Pathway analysis of muscle transcript profiles revealed …
Effects of hormone replacement therapy and high-impact physical exercise on skeletal muscle in post-menopausal women: a randomized placebo-controlled study
An age-related decline in muscle performance is a known risk factor for falling, fracture and disability. In women, a clear deterioration is observed from early menopause. The effect of hormone replacement therapy (HRT) in preserving muscle performance is, however, unclear. This trial examined the effects of a 12-month HRT and high-impact physical exercise regimen on skeletal muscle in women in early menopause. A total of 80 women aged 50–57 years were assigned randomly to one of four groups: exercise (Ex), HRT, exercise+HRT (ExHRT) and control (Co). The exercise groups participated in a high-impact training programme. The administration of HRT (oestradiol/noretisterone acetate) or placebo …
Change in bone mass distribution induced by hormone replacement therapy and high-impact physical exercise in post-menopausal women.
The purpose of this intervention trial was to determine whether changes in bone mass distribution could be observed in postmenopausal women following hormone replacement therapy (HRT) and/or high-impact physical exercise. Eighty healthy women, aged 50-57 years, at5 years after the onset of menopause and with no previous use of HRT, were randomly assigned to one of four groups: HRT; exercise (Ex); HRT + Ex (ExHRT); and control (Co). HRT administration was conducted in a double-blind manner for 1 year using estradiol plus noretisterone acetate (Kliogest). The exercise groups participated in a 1 year progressive training program consisting of jumping and bounding activities. Subjects participa…
Effects of combined hormone replacement therapy or its effective agents on the IGF-1 pathway in skeletal muscle.
Objectives To investigate the effects of combined hormone replacement therapy (HRT) and its effective agents on the IGF-1 signaling pathway. Design and methods To examine the effects of HRT on skeletal muscle in vivo, we utilized pre- and post-intervention samples from a randomized double blinded trial with 50–57-year-old women. The intervention included the year-long use of either HRT preparation (2 mg 17β-estradiol, E2; 1 mg norethisterone acetate, NETA, n = 10) or placebo (CO, n = 9). Microarray technology and quantitative PCR (qPCR) were used to study the expression of insulin-like growth factor I (IGF-1) and its splice variants as well as IGF-1 receptor, Akt1, mTOR, FOXO1, FOXO3, atrog…
Global gene expression profiles in skeletal muscle of monozygotic female twins discordant for hormone replacement therapy
Summary Aging is accompanied by inexorable loss of muscle tissue. One of the underlying causes for this is the massive change in the hormonal milieu of the body. The role of a female sex steroid – estrogen – in these processes is frequently neglected, although the rapid decline in its production coincides with a steep deterioration in muscle performance. We recruited 54- to 62-year-old monozygotic female twin pairs discordant for postmenopausal hormone replacement therapy (HRT, n = 11 pairs; HRT use 7.3 ± 3.7 years) from the Finnish Twin Cohort to investigate the association of long-term, estrogen-based HRT with skeletal muscle transcriptome. Pathway analysis of muscle transcript profiles r…
Power training and postmenopausal hormone therapy affect transcriptional control of specific co-regulated gene clusters in skeletal muscle
At the moment, there is no clear molecular explanation for the steeper decline in muscle performance after menopause or the mechanisms of counteractive treatments. The goal of this genome-wide study was to identify the genes and gene clusters through which power training (PT) comprising jumping activities or estrogen containing hormone replacement therapy (HRT) may affect skeletal muscle properties after menopause. We used musculus vastus lateralis samples from early stage postmenopausal (50–57 years old) women participating in a yearlong randomized double-blind placebo-controlled trial with PT and HRT interventions. Using microarray platform with over 24,000 probes, we identified 665 diffe…
The effect of hormone replacement therapy and/or exercise on skeletal muscle attenuation in postmenopausal women: a yearlong intervention
Hormone replacement therapy (HRT) has been reported to exert a positive effect on preserving muscle strength following the menopause, however, the mechanism of action remains unclear. We examined whether the mechanism involved preservation of muscle composition as determined by skeletal muscle attenuation. Eighty women aged 50-57 years were randomly assigned to either: HRT, exercise (Ex), HRT + exercise (ExHRT), and control (Co) for 1 year. The study was double-blinded with subjects receiving oestradiol and norethisterone acetate (Kliogest) or placebo. Exercise included progressive high-impact training for the lower limbs. Skeletal muscle attenuation in Hounsfield units (HU) was determined …
Influence of long-term postmenopausal hormone-replacement therapy on estimated structural bone strength: A study in discordant monozygotic twins
Although postmenopausal hormone-replacement therapy (HRT) is known to prevent fractures, knowledge on the influence of long-term HRT on bone strength and its determinants other than areal bone mineral density is scarce. This study used a genetically controlled design with 24 monozygotic female twin pairs aged 54 to 72 years in which one cotwin was using HRT (mean duration 8 years) and the other had never used HRT. Estimated bone strength, cross-sectional area, volumetric bone mineral density, bone mineral mass, and cross-sectional density and mass distributions were assessed in the tibial shaft, distal tibia, and distal radius with peripheral computed tomography (pQCT). In the tibial shaft,…
Influence of long-term postmenopausal hormone replacement therapy on estimated structural bone strength: A study in discordant monozygotic twins.
Although postmenopausal hormone-replacement therapy (HRT) is known to prevent fractures, knowledge on the influence of long-term HRT on bone strength and its determinants other than areal bone mineral density is scarce. This study used a genetically controlled design with 24 monozygotic female twin pairs aged 54 to 72 years in which one cotwin was using HRT (mean duration 8 years) and the other had never used HRT. Estimated bone strength, cross-sectional area, volumetric bone mineral density, bone mineral mass, and cross-sectional density and mass distributions were assessed in the tibial shaft, distal tibia, and distal radius with peripheral computed tomography (pQCT). In the tibial shaft,…
Differential influence of peripheral and systemic sex steroids on skeletal muscle quality in pre- and postmenopausal women
Aging is associated with gradual decline of skeletal muscle strength and mass often leading to diminished muscle quality. This phenomenon is known as sarcopenia and affects about 30% of the over 60-year-old population. Androgens act as anabolic agents regulating muscle mass and improving muscle performance. The role of female sex steroids as well as the ability of skeletal muscle tissue to locally produce sex steroids has been less extensively studied. We show that despite the extensive systemic deficit of sex steroid hormones in postmenopausal compared to premenopausal women, the hormone content of skeletal muscle does not follow the same trend. In contrast to the systemic levels, muscle t…
Postmenopausal hormone replacement therapy modifies skeletal muscle composition and function: a study with monozygotic twin pairs
We investigated whether long-term hormone replacement therapy (HRT) is associated with mobility and lower limb muscle performance and composition in postmenopausal women. Fifteen 54- to 62-yr-old monozygotic female twin pairs discordant for HRT were recruited from the Finnish Twin Cohort. Habitual (HWS) and maximal (MWS) walking speeds over 10 m, thigh muscle composition, lower body muscle power assessed as vertical jumping height, and maximal isometric hand grip and knee extension strengths were measured. Intrapair differences (IPD%) with 95% confidence intervals (CI) were calculated. The mean duration of HRT use was 6.9 ± 4.1 yr. MWS was on average 7% (0.9 to 13.1%, P = 0.019) and muscle…