0000000001077888

AUTHOR

Daria Setman

showing 3 related works from this author

Cover Feature: Controlling the Formation of Sodium/Black Phosphorus IntercalationCompounds Towards High Sodium Content (8/2021)

2021

ChemistryFeature (computer vision)SodiumX-ray crystallographyContent (measure theory)ElectrochemistryHigh sodiumAnalytical chemistryEnergy Engineering and Power Technologychemistry.chemical_elementCover (algebra)Electrical and Electronic EngineeringBlack phosphorusBatteries & Supercaps
researchProduct

Controlling the formation of sodium/black phosphorus intercalated compounds towards high sodium content

2021

The solid-state synthesis of pure sodium-black phosphorus intercalation compounds (Na-BPICs) has been optimized in bulk for two stoichiometric ratios. Specifically, in-situ X-Ray diffraction (XRD) allowed the precise identification of the optimal temperature range for the formation of Na-BPICs: 94 °C–96 °C. Moreover, as the undesired formation of Na3P takes place at this very same range, we succeeded in introducing a new synthetic route based on a fast-thermal ball milling implementation that results in the bulk production of BPIC without Na3P in 9 out of 10 cases. Finally, by combining XRD, Raman spectroscopy, and DFT calculations we developed a new structural model for Na-based BPICs show…

UNESCO::QUÍMICA:QUÍMICA [UNESCO]
researchProduct

Controlling the Formation of Sodium/Black Phosphorus IntercalationCompounds Towards High Sodium Content

2021

The solid-state synthesis of pure sodium-black phosphorus intercalation compounds (Na-BPICs) has been optimized in bulk for two stoichiometric ratios. Specifically, in-situ X-Ray diffraction (XRD) allowed the precise identification of the optimal temperature range for the formation of Na-BPICs: 94°C–96°C. Moreover, as the undesired formation of Na3P takes place at this very same range, we succeeded in introducing a new synthetic route based on a fast-thermal ball milling implementation that results in the bulk production of BPIC without Na3P in 9 out of 10 cases. Finally, by combining XRD, Raman spectroscopy, and DFT calculations we developed a new structural model for Na-based BPICs showin…

DiffractionMaterials scienceSodiumIntercalation (chemistry)Energy Engineering and Power Technologychemistry.chemical_element02 engineering and technologyblack phosphorusDFT calculations01 natural sciencessymbols.namesakeElectrochemistryintercalation compoundsElectrical and Electronic EngineeringsodiumBall mill010405 organic chemistryAtmospheric temperature range021001 nanoscience & nanotechnologyX-ray diffraction0104 chemical scienceschemistryChemical engineeringX-ray crystallographysymbols0210 nano-technologyRaman spectroscopyStoichiometryddc:547Batteries & Supercaps
researchProduct