0000000001078675

AUTHOR

Joaquín Fernández-rossier

Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling

Magnetic insulators are a key resource for next-generation spintronic and topological devices. The family of layered metal halides promises varied magnetic states, including ultrathin insulating multiferroics, spin liquids, and ferromagnets, but device-oriented characterization methods are needed to unlock their potential. Here, we report tunneling through the layered magnetic insulator CrI₃ as a function of temperature and applied magnetic field.We electrically detect the magnetic ground state and interlayer coupling and observe a fieldinducedmetamagnetic transition.The metamagnetic transition results in magnetoresistances of 95, 300, and 550% for bilayer, trilayer, and tetralayer CrI₃ bar…

research product

Electronic and magnetic properties of VOCl/FeOCl antiferromagnetic heterobilayers

We study the electronic properties of the heterobilayer of vanadium and iron oxychlorides, VOCl and FeOCl, two layered air stable van der Waals insulating oxides with different types of antiferromagnetic order in bulk: VOCl monolayers are ferromagnetic (FM) whereas the FeOCl monolayers are antiferromagnetic (AF). We use density functional theory (DFT) calculations, with Hubbard correction that is found to be needed to describe correctly the insulating nature of these compounds. We compute the magnetic anisotropy and propose a spin model Hamiltonian. Our calculations show that interlayer coupling in weak and ferromagnetic so that magnetic order of the monolayers is preserved in the heterobil…

research product