0000000001080947

AUTHOR

Michael Czerner

showing 3 related works from this author

Spin accumulation from nonequilibrium first principles methods

2021

For the technologically relevant spin Hall effect, most theoretical approaches rely on the evaluation of the spin-conductivity tensor. In contrast, for most experimental configurations the generation of spin accumulation at interfaces and surfaces is the relevant quantity. Here, we directly calculate the accumulation of spins due to the spin Hall effect at the surface of a thin metallic layer, making quantitative predictions for different materials. Two distinct limits are considered, both relying on a fully relativistic Korringa-Kohn-Rostoker density functional theory method. In the semiclassical approach, we use the Boltzmann transport formalism and compare it directly with a fully quantu…

PhysicsCondensed Matter - Materials ScienceCondensed matter physicsSpinsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesNon-equilibrium thermodynamicsSemiclassical physicscond-mat.mtrl-sciKeldysh formalismCondensed Matter - Other Condensed Mattercond-mat.otherSpin Hall effectDensity functional theoryTensorOther Condensed Matter (cond-mat.other)Spin-½Physical Review B
researchProduct

On/off switching of bit readout in bias-enhanced tunnel magneto-Seebeck effect.

2014

Thermoelectric effects in magnetic tunnel junctions are currently an attractive research topic. Here, we demonstrate that the tunnel magneto-Seebeck effect (TMS) in CoFeB/MgO/CoFeB tunnel junctions can be switched on to a logic 1 state and off to 0 by simply changing the magnetic state of the CoFeB electrodes. We enable this new functionality of magnetic tunnel junctions by combining a thermal gradient and an electric field. This new technique unveils the bias-enhanced tunnel magneto-Seebeck effect, which can serve as the basis for logic devices or memories in a green information technology with a pure thermal write and read process. Furthermore, the thermally generated voltages that are re…

Condensed Matter::Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)FOS: Physical sciencesmagneto-Seebeck effectCondensed Matter::Mesoscopic Systems and Quantum Hall Effect530Article
researchProduct

Spin caloric transport from density-functional theory

2019

Spin caloric transport refers to the coupling of heat with spin transport. Its applications primarily concern the generation of spin currents and control of magnetisation by temperature gradients for information technology, known by the synonym spin caloritronics. Within the framework of ab initio theory, new tools are being developed to provide an additional understanding of these phenomena in realistic materials, accounting for the complexity of the electronic structure without adjustable parameters. Here, we review this progress, summarising the principles of the density-functional-based approaches in the field and presenting a number of application highlights. Our discussion includes th…

spintronicsMaterials scienceAcoustics and UltrasonicsSpintronicsCondensed matter physicsthermal spin torqueCaloric theory02 engineering and technologyPhysik (inkl. Astronomie)021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesspin Nernst effectSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialsspin Seebeck effectdensity functional calculations0103 physical sciencesspin caloritronicsDensity functional theoryCondensed Matter::Strongly Correlated Electronsmagneto-Seebeck effect010306 general physics0210 nano-technologySpin-½
researchProduct