0000000001081193

AUTHOR

Taro Kimura

showing 4 related works from this author

Intersecting Defects and Supergroup Gauge Theory

2021

Journal of physics / A 54(43), 435401 (2021). doi:10.1088/1751-8121/ac2716

High Energy Physics - TheoryInstantondimension: 5supersymmetry: algebra[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]General Physics and Astronomy01 natural sciencesHigh Energy Physics::Theorytopological [string]Mathematics - Quantum AlgebraGauge theorytopological stringsMathematical PhysicsdefectsPhysics[PHYS]Physics [physics][PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]Chern-Simons termsupergroups[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph]algebra [supersymmetry]5 [dimension]geometrical [transition]Modeling and SimulationEmbeddingBPSinstanton010307 mathematical physicsSupergroupStatistics and Probabilitysupersymmetry [gauge field theory]defectFOS: Physical sciencesDuality (optimization)Unitary state530Supersymmetric gauge theoryTheoretical physicsIntersectiongauge field theory: supersymmetry0103 physical sciencesFOS: Mathematicsstring: topologicalQuantum Algebra (math.QA)ddc:530Abelian grouptransition: geometrical010308 nuclear & particles physicsStatistical and Nonlinear PhysicsHigh Energy Physics - Theory (hep-th)Chern-Simons theory[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th]
researchProduct

The Schur Expansion of Characteristic Polynomials and Random Matrices

2021

We develop a new framework to compute the exact correlators of characteristic polynomials, and their inverses, in random matrix theory. Our results hold for general potentials and incorporate the effects of an external source. In matrix model realizations of string theory, these correspond to correlation functions of exponentiated "(anti-)branes" in a given background of "momentum branes". Our method relies on expanding the (inverse) determinants in terms of Schur polynomials, then re-summing their expectation values over the allowed representations of the symmetric group. Beyond unifying previous, seemingly disparate calculations, this powerful technique immediately delivers two new result…

High Energy Physics - TheoryHigh Energy Physics - Theory (hep-th)[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th][PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciences[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th]Mathematical Physics (math-ph)correlation functionmatrix model: random[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph]string modeldeterminantMathematical Physics
researchProduct

Instanton Counting, Quantum Geometry and Algebra

2020

The aim of this memoir for "Habilitation \`a Diriger des Recherches" is to present quantum geometric and algebraic aspects of supersymmetric gauge theory, which emerge from non-perturbative nature of the vacuum structure induced by instantons. We start with a brief summary of the equivariant localization of the instanton moduli space, and show how to obtain the instanton partition function and its generalization to quiver gauge theory and supergroup gauge theory in three ways: the equivariant index formula, the contour integral formula, and the combinatorial formula. We then explore the geometric description of $\mathcal{N} = 2$ gauge theory based on Seiberg-Witten geometry together with it…

High Energy Physics - TheoryQuiver gauge theoryThéorie de jauje de carquoisHigh Energy Physics::Lattice[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciencesQuiver W-algebraqq-characterW-algébre de carquoisHigh Energy Physics::TheorySupergroupgauge theory[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]InstantonMathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Representation Theory (math.RT)Algébre vertexComputingMilieux_MISCELLANEOUSMathematical PhysicsSeiberg–Witten geometryIntegrable systemqq-caractéreVertex operator algebra[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]High Energy Physics::PhenomenologyMathematical Physics (math-ph)Localization équivarianteGéométrie de Seiberg–WittenHigh Energy Physics - Theory (hep-th)Théoriede jauje de supergroupe[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th]Systèmes intégrablesEquivariant localizationMathematics - Representation Theory
researchProduct

Integrating over quiver variety and BPS/CFT correspondence

2019

We show the vertex operator formalism for the quiver gauge theory partition function and the $qq$-character of highest-weight module on quiver, both associated with the integral over the quiver variety.

High Energy Physics - Theorypartition function[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciencesalgebraSupersymmetric gauge theoryQuiver variety[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Mathematics - Quantum AlgebraInstantonFOS: MathematicsQuantum Algebra (math.QA)Representation Theory (math.RT)Mathematics::Representation Theoryfield theory: conformalVertex operator algebra[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]W-algebraMathematics::Rings and Algebras[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph]operator: vertexgauge field theory: quiverConformal field theoryHigh Energy Physics - Theory (hep-th)BPS[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th]instantonsMathematics - Representation Theory
researchProduct