6533b82efe1ef96bd1293eba

RESEARCH PRODUCT

Instanton Counting, Quantum Geometry and Algebra

Taro Kimura

subject

High Energy Physics - TheoryQuiver gauge theoryThéorie de jauje de carquoisHigh Energy Physics::Lattice[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciencesQuiver W-algebraqq-characterW-algébre de carquoisHigh Energy Physics::TheorySupergroupgauge theory[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]InstantonMathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Representation Theory (math.RT)Algébre vertexComputingMilieux_MISCELLANEOUSMathematical PhysicsSeiberg–Witten geometryIntegrable systemqq-caractéreVertex operator algebra[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]High Energy Physics::PhenomenologyMathematical Physics (math-ph)Localization équivarianteGéométrie de Seiberg–WittenHigh Energy Physics - Theory (hep-th)Théoriede jauje de supergroupe[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th]Systèmes intégrablesEquivariant localizationMathematics - Representation Theory

description

The aim of this memoir for "Habilitation \`a Diriger des Recherches" is to present quantum geometric and algebraic aspects of supersymmetric gauge theory, which emerge from non-perturbative nature of the vacuum structure induced by instantons. We start with a brief summary of the equivariant localization of the instanton moduli space, and show how to obtain the instanton partition function and its generalization to quiver gauge theory and supergroup gauge theory in three ways: the equivariant index formula, the contour integral formula, and the combinatorial formula. We then explore the geometric description of $\mathcal{N} = 2$ gauge theory based on Seiberg-Witten geometry together with its string/M-theory perspective. Through its relation to integrable systems, we show how to quantize such a geometric structure via the $\Omega$-deformation of gauge theory. We also discuss the underlying quantum algebraic structure arising from the supersymmetric vacua. We introduce the notion of quiver W-algebra constructed through double quantization of Seiberg-Witten geometry, and show its specific features: affine quiver W-algebras, fractional quiver W-algebras, and their elliptic deformations.

10.1007/978-3-030-76190-5http://arxiv.org/abs/2012.11711