0000000001081880
AUTHOR
S. Santisi
The microbial community of sub-surface sediment of a chronically contaminated SIC
Hydrocarbons (HC), especially high molecular weight HC, are trapped in the sediments for a long time, making the benthic system a permanent pollution source, with several effects on the biota. Sediment bacterial communities play a significant role in the degradation of contaminants, both under aerobic and anaerobic conditions. In this work we focused on the bacterial communities of sediments (5-10 cm below surface), of a Site of Community Importance, the Priolo Bay, in Central Mediterranean Sea. The bay is situated in proximity to the Augusta Harbour, affected for decades by pollution from industrial and petrochemical plants. The microbial communities of sediments from six stations on two t…
A new scaffold-bacteria-based system for bioremediation of oil contaminated water
Bioremediation is a promising non-invasive and cost-effective technology that uses (micro)organisms to degrade or remove hazardous environmental pollutants. New methods are needed to enhance and optimize natural biodegradation, such as the use of carrier materials that could improve survival and catalytic activity of the biodegraders. In this study, we developed a bioremediation system based on a new 3D polycaprolactone-based scaffold and hydrocarbon(HC)-degrading bacteria to clean (sea)water contaminated by crude oil and its derivatives. Scaffold biopolymers are biodegradable, produced in the melt, i.e. at low cost and without the use of toxic solvents. They can be available in large quant…
Polycaprolactone-based scaffold for oil-selective sorption and improvement of bacteria activity for bioremediation of polluted water: Porous PCL system obtained by leaching melt mixed PCL/PEG/NaCl composites: Oil uptake performance and bioremediation efficiency
A novel floatable and biodegradable sponge for the selective absorption of oil from water and potentially useful as cell carrier for bioremediation treatments was prepared in polycaprolactone (PCL). The eco-friendly process for fabricating the PCL sponge does not involve either synthetic routes or organic solvents, thus minimizing environmental hazard. In particular, the 3D porous materials have been prepared by mixing in the melt the polymer matrix with two water-soluble porogen agents (NaCl and PEG) and thereafter leaching the obtained PCL/NaCl/PEG composites in water. The PCL sponges here proposed are capable to remove different types of oily pollutants (up to 500 wt%), and were successf…