A differential equation approach to implicit sweeping processes
International audience; In this paper, we study an implicit version of the sweeping process. Based on methods of convex analysis, we prove the equivalence of the implicit sweeping process with a differential equation, which enables us to show the existence and uniqueness of the solution to the implicit sweeping process in a very general framework. Moreover, this equivalence allows us to give a characterization of nonsmooth Lyapunov pairs and invariance for implicit sweeping processes. The results of the paper are illustrated with two applications to quasistatic evolution variational inequalities and electrical circuits.
Differential inclusions involving normal cones of nonregular sets in Hilbert spaces
This thesis is dedicated to the study of differential inclusions involving normal cones of nonregular sets in Hilbert spaces. In particular, we are interested in the sweeping process and its variants. The sweeping process is a constrained differential inclusion involving normal cones which appears naturally in several applications such as elastoplasticity, electrical circuits, hysteresis, crowd motion, etc.This work is divided conceptually in three parts: Study of positively alpha-far sets, existence results for differential inclusions involving normal cones and characterizations of Lyapunov pairs for the sweeping process. In the first part (Chapter 2), we investigate the class of positivel…
Regularization of perturbed state-dependent sweeping processes with nonregular sets
International audience; In this paper, we prove the convergence strongly pointwisely (up to a subsequence) of Moreau-Yosida regularization of perturbed state-dependent sweeping process with nonregular (subsmooth and positively alpha-far) sets in separable Hilbert spaces. Some relevant consequences are indicated.