Prediction of the mesiodistal size of unerupted canines and premolars for a group of Romanian children: a comparative study
Objectives The aim of the present study was to develop an optimization method of multiple linear regression equation (MLRE), using a genetic algorithm to determine a set of coefficients that minimize the prediction error for the sum of permanent premolars and canine dimensions in a group of young people from a central area of Romania represented by a city called Sibiu. Material and Methods To test the proposed method, we used a multiple linear regression equation derived from the estimation method proposed by Mojers, to which we adjusted regression coefficients using the Breeder genetic algorithm. A total of 92 children were selected with complete permanent teeth with no clinically visible …