0000000001085335

AUTHOR

A. Riminucci

showing 2 related works from this author

Seed layer technique for high quality epitaxial manganite films

2016

We introduce an innovative approach to the simultaneous control of growth mode and magnetotransport properties of manganite thin films, based on an easy-to-implement film/substrate interface engineering. The deposition of a manganite seed layer and the optimization of the substrate temperature allows a persistent bi-dimensional epitaxy and robust ferromagnetic properties at the same time. Structural measurements confirm that in such interface-engineered films, the optimal properties are related to improved epitaxy. A new growth scenario is envisaged, compatible with a shift from heteroepitaxy towards pseudo-homoepitaxy. Relevant growth parameters such as formation energy, roughening tempera…

Materials scienceFerromagnetic material propertiesDielectrophoresisGeneral Physics and AstronomyMagnetic filmsNanotechnology02 engineering and technologySubstrate (electronics)Epitaxy01 natural sciencesNOPhysics and Astronomy (all)0103 physical sciencesThin film growthThin film010306 general physicsDeposition (law)business.industry021001 nanoscience & nanotechnologyManganitelcsh:QC1-999X-ray diffractionChemical stateOptoelectronics0210 nano-technologybusinessLayer (electronics)lcsh:PhysicsRegular ArticlesEpitaxyAIP Advances
researchProduct

Enhancing Light Emission in Interface Engineered Spin-OLEDs Through Spin-Polarized Injection at High Voltages

2016

The quest for a spin-polarized organic light emitting diode (spin-OLED) is a common goal in the emerging fields of molecular electronics and spintronics. In this device two ferromagnetic electrodes are used to enhance the electroluminescence intensity of the OLED through a magnetic control of the spin polarization of the injected carriers. The major difficulty is that the driving voltage of an OLED device exceeds of a few volts, while spin injection in organic materials is only efficient at low voltages. We report here the fabrication of a spin-OLED that uses a conjugated polymer as bipolar spin collector layer and ferromagnetic electrodes. Through a careful engineering of the organic/inorg…

Condensed Matter::Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsPhysics::Instrumentation and DetectorsMesoscale and Nanoscale Physics (cond-mat.mes-hall)FOS: Physical sciencesCondensed Matter::Strongly Correlated Electrons
researchProduct