Finite index subgroups of mapping class groups
Let g ≥ 3 and n ≥ 0, and let Mg,n be the mapping class group of a surface of genus g with n boundary components. We prove that Mg,n contains a unique subgroup of index 2g−1(2g − 1) up to conjugation, a unique subgroup of index 2g−1(2g + 1) up to conjugation, and the other proper subgroups ofMg,n are of index greater than 2g−1(2g+1). In particular, the minimum index for a proper subgroup of Mg,n is 2g−1(2g − 1). AMS Subject Classification. Primary: 57M99. Secondary: 20G40, 20E28. 0 Introduction and statement of results The interaction between mapping class groups and finite groups has long been a topic of interest. The famous Hurwitz bound of 1893 showed that the mapping class group of a clo…