A Comparative Study of Nonlinear Machine Learning for the "In Silico" Depiction of Tyrosinase Inhibitory Activity from Molecular Structure.
In the preset report, for the first time, support vector machine (SVM), artificial neural network (ANN), Baye- sian networks (BNs), k-nearest neighbor (k-NN) are applied and compared on two "in-house" datasets to describe the tyrosinase inhibitory activity from the molecular structure. The data set Data I is used for the identification of tyrosi- nase inhibitors (TIs) including 701 active and 728 inactive compounds. Data II consists of active chemicals for potency estimation of TIs. The 2D TOMOCOMD-CARDD atom-based quadratic indices are used as molecular descriptors. The de- rived models show rather encouraging results with the areas under the Receiver Operating Characteristic (AURC) curve …