0000000001088084
AUTHOR
Martina Gerbino
Constraints on the sum of the neutrino masses in dynamical dark energy models with $w(z) \geq -1$ are tighter than those obtained in $\Lambda$CDM
We explore cosmological constraints on the sum of the three active neutrino masses $M_{\nu}$ in the context of dynamical dark energy (DDE) models with equation of state (EoS) parametrized as a function of redshift $z$ by $w(z)=w_0+w_a\,z/(1+z)$, and satisfying $w(z)\geq-1$ for all $z$. We perform a Bayesian analysis and show that, within these models, the bounds on $M_{\nu}$ \textit{do not degrade} with respect to those obtained in the $\Lambda$CDM case; in fact the bounds are slightly tighter, despite the enlarged parameter space. We explain our results based on the observation that, for fixed choices of $w_0\,,w_a$ such that $w(z)\geq-1$ (but not $w=-1$ for all $z$), the upper limit on $M…
Impact of neutrino properties on the estimation of inflationary parameters from current and future observations
We study the impact of assumptions about neutrino properties on the estimation of inflationary parameters from cosmological data, with a specific focus on the allowed contours in the $n_s/r$ plane. We study the following neutrino properties: (i) the total neutrino mass $ M_\nu =\sum_i m_i$; (ii) the number of relativistic degrees of freedom $N_{eff}$; and (iii) the neutrino hierarchy: whereas previous literature assumed 3 degenerate neutrino masses or two massless neutrino species (that do not match neutrino oscillation data), we study the cases of normal and inverted hierarchy. Our basic result is that these three neutrino properties induce $< 1 \sigma$ shift of the probability contours in…
On the improvement of cosmological neutrino mass bounds
The most recent measurements of the temperature and low-multipole polarization anisotropies of the Cosmic Microwave Background (CMB) from the Planck satellite, when combined with galaxy clustering data from the Baryon Oscillation Spectroscopic Survey (BOSS) in the form of the full shape of the power spectrum, and with Baryon Acoustic Oscillation measurements, provide a $95\%$ confidence level (CL) upper bound on the sum of the three active neutrinos $\sum m _��< 0.183$ eV, among the tightest neutrino mass bounds in the literature, to date, when the same datasets are taken into account. This very same data combination is able to set, at $\sim70\%$ CL, an upper limit on $\sum m _��$ of $0.…
Unveiling ν secrets with cosmological data: Neutrino masses and mass hierarchy
Using some of the latest cosmological datasets publicly available, we derive the strongest bounds in the literature on the sum of the three active neutrino masses, $M_\nu$, within the assumption of a background flat $\Lambda$CDM cosmology. In the most conservative scheme, combining Planck cosmic microwave background (CMB) temperature anisotropies and baryon acoustic oscillations (BAO) data, as well as the up-to-date constraint on the optical depth to reionization ($\tau$), the tightest $95\%$ confidence level (C.L.) upper bound we find is $M_\nu0.06\,{\rm eV}$ from oscillations data would raise the quoted upper bounds by ${\cal O}(0.1\sigma)$ and would not affect our conclusions.
Bounds on light sterile neutrino mass and mixing from cosmology and laboratory searches
We provide a consistent framework to set limits on properties of light sterile neutrinos coupled to all three active neutrinos using a combination of the latest cosmological data and terrestrial measurements from oscillations, $\beta$-decay and neutrinoless double-$\beta$ decay ($0\nu\beta\beta$) experiments. We directly constrain the full $3+1$ active-sterile mixing matrix elements $|U_{\alpha4}|^2$, with $\alpha \in ( e,\mu ,\tau )$, and the mass-squared splitting $\Delta m^2_{41} \equiv m_4^2-m_1^2$. We find that results for a $3+1$ case differ from previously studied $1+1$ scenarios where the sterile is only coupled to one of the neutrinos, which is largely explained by parameter space …
Improvement of cosmological neutrino mass bounds
The most recent measurements of the temperature and low-multipole polarization anisotropies of the cosmic microwave background from the Planck satellite, when combined with galaxy clustering data f ...
A novel approach to quantifying the sensitivity of current and future cosmological datasets to the neutrino mass ordering through Bayesian hierarchical modeling
We present a novel approach to derive constraints on neutrino masses from cosmological data, while taking into account our ignorance of the neutrino mass ordering. We derive constraints from a combination of current and future cosmological datasets on the total neutrino mass $M_\nu$ and on the mass fractions carried by each of the mass eigenstates, after marginalizing over the (unknown) neutrino mass ordering, either normal (NH) or inverted (IH). The bounds take therefore into account the uncertainty related to our ignorance of the mass hierarchy. This novel approach is carried out in the framework of Bayesian analysis of a typical hierarchical problem. In this context, the choice of the ne…