CLS 2+1 flavor simulations at physical light-and strange-quark masses
We report recent efforts by CLS to generate an ensemble with physical light- and strange-quark masses in a lattice volume of 192x96^3 at $\beta=3.55$ corresponding to a lattice spacing of 0.064 fm. This ensemble is being generated as part of the CLS 2+1 flavor effort with improved Wilson fermions. Our simulations currently cover 5 lattice spacings ranging from 0.039 fm to 0.086 fm at various pion masses along chiral trajectories with either the sum of the quark masses kept fixed, or with the strange-quark mass at the physical value. The current status of simulations is briefly reviewed, including a short discussion of measured autocorrelation times and of the main features of the simulation…
(Approximate) Low-Mode Averaging with a new Multigrid Eigensolver
We present a multigrid based eigensolver for computing low-modes of the Hermitian Wilson Dirac operator. For the non-Hermitian case multigrid methods have already replaced conventional Krylov subspace solvers in many lattice QCD computations. Since the $\gamma_5$-preserving aggregation based interpolation used in our multigrid method is valid for both, the Hermitian and the non-Hermitian case, inversions of very ill-conditioned shifted systems with the Hermitian operator become feasible. This enables the use of multigrid within shift-and-invert type eigensolvers. We show numerical results from our MPI-C implementation of a Rayleigh quotient iteration with multigrid. For state-of-the-art lat…