0000000001088253
AUTHOR
Ian Pratt-hartmann
The Syllogistic with Unity
We extend the language of the classical syllogisms with the sentence-forms “At most 1 p is a q” and “More than 1 p is a q”. We show that the resulting logic does not admit a finite set of syllogism-like rules whose associated derivation relation is sound and complete, even when reductio ad absurdum is allowed.
Adding Path-Functional Dependencies to the Guarded Two-Variable Fragment with Counting
The satisfiability and finite satisfiability problems for the two-variable guarded fragment of first-order logic with counting quantifiers, a database, and path-functional dependencies are both ExpTime-complete.
The Fluted Fragment with Transitivity
We study the satisfiability problem for the fluted fragment extended with transitive relations. We show that the logic enjoys the finite model property when only one transitive relation is available. On the other hand we show that the satisfiability problem is undecidable already for the two-variable fragment of the logic in the presence of three transitive relations.
Spatial reasoning withRCC8and connectedness constraints in Euclidean spaces
The language RCC 8 is a widely-studied formalism for describing topological arrangements of spatial regions. The variables of this language range over the collection of non-empty, regular closed sets of n-dimensional Euclidean space, here denoted RC + ( R n ) , and its non-logical primitives allow us to specify how the interiors, exteriors and boundaries of these sets intersect. The key question is the satisfiability problem: given a finite set of atomic RCC 8 -constraints in m variables, determine whether there exists an m-tuple of elements of RC + ( R n ) satisfying them. These problems are known to coincide for all n � 1 , so that RCC 8 -satisfiability is independent of dimension. This c…
Equivalence closure in the two-variable guarded fragment
We consider the satisfiability and finite satisfiability problems for the extension of the two-variable guarded fragment in which an equivalence closure operator can be applied to two distinguished binary predicates. We show that the satisfiability and finite satisfiability problems for this logic are 2-ExpTime-complete. This contrasts with an earlier result that the corresponding problems for the full two-variable logic with equivalence closures of two binary predicates are 2-NExpTime-complete.
Quine’s Fluted Fragment is Non-elementary
We study the fluted fragment, a decidable fragment of first-order logic with an unbounded number of variables, originally identified by W.V. Quine. We show that the satisfiability problem for this fragment has non-elementary complexity, thus refuting an earlier published claim by W.C. Purdy that it is in NExpTime. More precisely, we consider, for all m greater than 1, the intersectionof the fluted fragment and the m-variable fragment of first-order logic. We show that this subfragment forces (m/2)-tuply exponentially large models, and that its satisfiability problem is (m/2)-NExpTime-hard. We round off by using a corrected version of Purdy’s construction to show that the m-variable fluted f…
Logics with counting and equivalence
We consider the two-variable fragment of first-order logic with counting, subject to the stipulation that a single distinguished binary predicate be interpreted as an equivalence. We show that the satisfiability and finite satisfiability problems for this logic are both NEXPTIME-complete. We further show that the corresponding problems for two-variable first-order logic with counting and two equivalences are both undecidable.
The fluted fragment revisited
AbstractWe study the fluted fragment, a decidable fragment of first-order logic with an unbounded number of variables, motivated by the work of W. V. Quine. We show that the satisfiability problem for this fragment has nonelementary complexity, thus refuting an earlier published claim by W. C. Purdy that it is in NExpTime. More precisely, we consider ${\cal F}{{\cal L}^m}$, the intersection of the fluted fragment and the m-variable fragment of first-order logic, for all $m \ge 1$. We show that, for $m \ge 2$, this subfragment forces $\left\lfloor {m/2} \right\rfloor$-tuply exponentially large models, and that its satisfiability problem is $\left\lfloor {m/2} \right\rfloor$-NExpTime-hard. We…
Two-Variable First-Order Logic with Equivalence Closure
We consider the satisfiability and finite satisfiability problems for extensions of the two-variable fragment of first-order logic in which an equivalence closure operator can be applied to a fixed number of binary predicates. We show that the satisfiability problem for two-variable, first-order logic with equivalence closure applied to two binary predicates is in 2-NExpTime, and we obtain a matching lower bound by showing that the satisfiability problem for two-variable first-order logic in the presence of two equivalence relations is 2-NExpTime-hard. The logics in question lack the finite model property; however, we show that the same complexity bounds hold for the corresponding finite sa…
Fluted Logic with Counting
The fluted fragment is a fragment of first-order logic in which the order of quantification of variables coincides with the order in which those variables appear as arguments of predicates. It is known that the fluted fragment possesses the finite model property. In this paper, we extend the fluted fragment by the addition of counting quantifiers. We show that the resulting logic retains the finite model property, and that the satisfiability problem for its (m+1)-variable sub-fragment is in m-NExpTime for all positive m. We also consider the satisfiability and finite satisfiability problems for the extension of any of these fragments in which the fluting requirement applies only to sub-form…
The fluted fragment with transitive relations
Abstract The fluted fragment is a fragment of first-order logic (without equality) in which, roughly speaking, the order of quantification of variables coincides with the order in which those variables appear as arguments of predicates. It is known that this fragment has the finite model property. We consider extensions of the fluted fragment with various numbers of transitive relations, as well as the equality predicate. In the presence of one transitive relation (together with equality), the finite model property is lost; nevertheless, we show that the satisfiability and finite satisfiability problems for this extension remain decidable. We also show that the corresponding problems in the…
Functions definable by numerical set-expressions
A "numerical set-expression" is a term specifying a cascade of arithmetic and logical operations to be performed on sets of non-negative integers. If these operations are confined to the usual Boolean operations together with the result of lifting addition to the level of sets, we speak of "additive circuits". If they are confined to the usual Boolean operations together with the result of lifting addition and multiplication to the level of sets, we speak of "arithmetic circuits". In this paper, we investigate the definability of sets and functions by means of additive and arithmetic circuits, occasionally augmented with additional operations.
Two-variable First-Order Logic with Counting in Forests
We consider an extension of two-variable, first-order logic with counting quantifiers and arbitrarily many unary and binary predicates, in which one distinguished predicate is interpreted as the mother-daughter relation in an unranked forest. We show that both the finite satisfiability and the general satisfiability problems for the extended logic are decidable in NExpTime. We also show that the decision procedure for finite satisfiability can be extended to the logic where two distinguished predicates are interpreted as the mother-daughter relations in two independent forests.
Topological Logics with Connectedness over Euclidean Spaces
We consider the quantifier-free languages, Bc and Bc °, obtained by augmenting the signature of Boolean algebras with a unary predicate representing, respectively, the property of being connected, and the property of having a connected interior. These languages are interpreted over the regular closed sets of R n ( n ≥ 2) and, additionally, over the regular closed semilinear sets of R n . The resulting logics are examples of formalisms that have recently been proposed in the Artificial Intelligence literature under the rubric Qualitative Spatial Reasoning. We prove that the satisfiability problem for Bc is undecidable over the regular closed semilinear sets in all dimensions greater than 1,…
Two-variable logics with counting and semantic constraints
In this article we discuss fragments and extensions of two-variable logics motivated by practical applications. We outline the decidability frontier, describing some of the techniques developed for deciding satisfiability and finite satisfiability, as well as characterizing their complexity.
Adding Transitivity and Counting to the Fluted Fragment
We study the impact of adding both counting quantifiers and a single transitive relation to the fluted fragment - a fragment of first-order logic originating in the work of W.V.O. Quine. The resulting formalism can be viewed as a multi-variable, non-guarded extension of certain systems of description logic featuring number restrictions and transitive roles, but lacking role-inverses. We establish the finite model property for our logic, and show that the satisfiability problem for its k-variable sub-fragment is in (k+1)-NExpTime. We also derive ExpSpace-hardness of the satisfiability problem for the two-variable, fluted fragment with one transitive relation (but without counting quantifiers…