0000000001089617

AUTHOR

Jordi José

Reevaluation of theP30(p,γ)S31astrophysical reaction rate from a study of theT=1/2mirror nuclei,S31andP31

The $^{30}\mathrm{P}$($p,\ensuremath{\gamma}$)$^{31}\mathrm{S}$ reaction rate is expected to be the principal determinant for the endpoint of nucleosynthesis in classical novae. To date, the reaction rate has only been estimated through Hauser-Feschbach calculations and is unmeasured experimentally. This paper aims to remedy this situation. Excited states in $^{31}\mathrm{S}$ and $^{31}\mathrm{P}$ were populated in the $^{12}\mathrm{C}$($^{20}\mathrm{Ne}$,$n$) and $^{12}\mathrm{C}$($^{20}\mathrm{Ne}$,$p$) reactions, respectively, at a beam energy of 32 MeV, and their resulting $\ensuremath{\gamma}$decay was detected with the Gammasphere array. Around half the relevant proton unbound states …

research product

The Large Observatory For x-ray Timing

The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideFi…

research product

Observatory science with eXTP

Disponible preprint en: arXiv:1812.04023v1 [astro-ph.HE] [v1] Mon, 10 Dec 2018 19:00:52 UTC (4,376 KB)

research product

New constraints on the Al25(p,γ) reaction and its influence on the flux of cosmic γ rays from classical nova explosions

The astrophysical $^{25}\mathrm{Al}(p,\ensuremath{\gamma})\phantom{\rule{0.16em}{0ex}}^{26}\mathrm{Si}$ reaction represents one of the key remaining uncertainties in accurately modeling the abundance of radiogenic $^{26}\mathrm{Al}$ ejected from classical novae. Specifically, the strengths of key proton-unbound resonances in $^{26}\mathrm{Si}$, that govern the rate of the $^{25}\mathrm{Al}(p,\ensuremath{\gamma})$ reaction under explosive astrophysical conditions, remain unsettled. Here, we present a detailed spectroscopy study of the $^{26}\mathrm{Si}$ mirror nucleus $^{26}\mathrm{Mg}$. We have measured the lifetime of the ${3}^{+}$, 6.125-MeV state in $^{26}\mathrm{Mg}$ to be $19(3)\phanto…

research product