0000000001091334
AUTHOR
Jean-marc Gambaudo
Commutators and diffeomorphisms of surfaces
For any compact oriented surfacewe consider the group of diffeomorphisms ofwhich preserve a given area form. In this paper we show that the vector space of homogeneous quasi-morphisms on this group has infinite dimension. This result is proved by constructing explicitly and for each surface an infinite family of independent homogeneous quasi-morphisms. These constructions use simple arguments related to linking properties of the orbits of the diffeomorphisms.
Topological lower bounds on the distance between area preserving diffeomorphisms
Area preserving diffeomorphisms of the 2-disk which are Identity near the boundary form a group which can be equipped, using theL2-norm on its Lie algebra, with a right invariant metric. In this paper we give a lower bound on the distance between diffeomorphisms which is invariant under area preserving changes of coordinates and which improves the lower bound induced by the Calabi invariant. In the case of renormalizable and infinitely renormalizable maps, our estimate can be improved and computed.
Metric properties of the group of area preserving diffeomorphisms
Area preserving cliffeoinorpliisms of the 2-disk which are identity near the boundary form a group D2 wllich can be equipped, usin-g tlhe L2nlorm on its Lie algebra, with a right invariant metric. Witll tllis metric the diameter of D2 is infinite. In this paper we sl-iow that D2 contains quasiisometric embeddings of any finitely generated free group and any finitely generated abelian free group.