0000000001091334

AUTHOR

Jean-marc Gambaudo

Commutators and diffeomorphisms of surfaces

For any compact oriented surfacewe consider the group of diffeomorphisms ofwhich preserve a given area form. In this paper we show that the vector space of homogeneous quasi-morphisms on this group has infinite dimension. This result is proved by constructing explicitly and for each surface an infinite family of independent homogeneous quasi-morphisms. These constructions use simple arguments related to linking properties of the orbits of the diffeomorphisms.

research product

Topological lower bounds on the distance between area preserving diffeomorphisms

Area preserving diffeomorphisms of the 2-disk which are Identity near the boundary form a group which can be equipped, using theL2-norm on its Lie algebra, with a right invariant metric. In this paper we give a lower bound on the distance between diffeomorphisms which is invariant under area preserving changes of coordinates and which improves the lower bound induced by the Calabi invariant. In the case of renormalizable and infinitely renormalizable maps, our estimate can be improved and computed.

research product

Metric properties of the group of area preserving diffeomorphisms

Area preserving cliffeoinorpliisms of the 2-disk which are identity near the boundary form a group D2 wllich can be equipped, usin-g tlhe L2nlorm on its Lie algebra, with a right invariant metric. Witll tllis metric the diameter of D2 is infinite. In this paper we sl-iow that D2 contains quasiisometric embeddings of any finitely generated free group and any finitely generated abelian free group.

research product