0000000001091349
AUTHOR
A. A. Kuznetsov
Doubly Magic NucleusHs162108270
Theoretical calculations predict $^{270}\mathrm{Hs}$ ($Z=108$, $N=162$) to be a doubly magic deformed nucleus, decaying mainly by $\ensuremath{\alpha}$-particle emission. In this work, based on a rapid chemical isolation of Hs isotopes produced in the $^{26}\mathrm{Mg}+^{248}\mathrm{Cm}$ reaction, we observed 15 genetically linked nuclear decay chains. Four chains were attributed to the new nuclide $^{270}\mathrm{Hs}$, which decays by $\ensuremath{\alpha}$-particle emission with ${Q}_{\ensuremath{\alpha}}=9.02\ifmmode\pm\else\textpm\fi{}0.03\text{ }\text{ }\mathrm{MeV}$ to $^{266}\mathrm{Sg}$ which undergoes spontaneous fission with a half-life of ${444}_{\ensuremath{-}148}^{+444}\text{ }\t…
Observation of the3nEvaporation Channel in the Complete Hot-Fusion ReactionMg26+Cm248Leading to the New Superheavy NuclideHs271
The analysis of a large body of heavy ion fusion reaction data with medium-heavy projectiles ($6\ensuremath{\le}Z\ensuremath{\le}18$) and actinide targets suggests a disappearance of the $3n$ exit channel with increasing atomic number of the projectile. Here, we report a measurement of the excitation function of the reaction $^{248}\mathrm{Cm}(^{26}\mathrm{Mg},xn)^{274\mathrm{\text{\ensuremath{-}}}x}\mathrm{Hs}$ and the observation of the new nuclide $^{271}\mathrm{Hs}$ produced in the $3n$ evaporation channel at a beam energy well below the Bass fusion barrier with a cross section comparable to the maxima of the $4n$ and $5n$ channels. This indicates the possible discovery of new neutron-r…