A method for detecting malfunctions in PV solar panels based on electricity production monitoring
In this paper a new method is developed for automatically detecting outliers or faults in the solar energy production of identical sets (sister arrays) of photovoltaic (PV) solar panels. The method involves a two-stage unsupervised approach. In the first stage, "in control" energy production data are created by using outlier detection methods and functional principal component analysis in order to remove global and local outliers from the data set. In the second stage, control charts for the "in control" data are constructed using both a parametric method and three non-parametric methods. The control charts can be used to detect outliers or faults in the production data in real-time or at t…