0000000001092109
AUTHOR
M. Duehrssen
Search for new particles in two-jet final states in 7 TeV proton-proton collisions with the ATLAS detector at the LHC
19 páginas, 2 figuras, 1 tabla.-- et al.(ATLAS Collaboration).
Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC
Measurements are presented from proton–proton collisions at centre-of-mass energies of \sqrt{s} = 0.9 , 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared…
A search for new physics in dijet mass and angular distributions in pp collisions at [subscript √s=7] TeV measured with the ATLAS detector
A search for new interactions and resonances produced in LHC proton–proton (pp) collisions at a centre-of-mass energy ps = 7 TeV was performed with the ATLAS detector. Using a dataset with an integrated luminosity of 36 pb−1, dijet mass and angular distributions were measured up to dijet masses of 3.5 TeV and were found to be in good agreement with Standard Model predictions. This analysis sets limits at 95% CL on various models for new physics: an excited quark is excluded for mass between 0.60 and 2.64 TeV, an axigluon hypothesis is excluded for axigluon masses between 0.60 and 2.10 TeV and quantum black holes are excluded in models with six extra space–time dimensions for quantum gravity…
Performance of $b$-Jet Identification in the ATLAS Experiment
We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT an…