0000000001092242
AUTHOR
B. Salvachua
Installation and commissioning of the TileCal Read-Out Drivers
TileCal is the hadronic tile calorimeter of the ATLAS experiment at LHC/CERN. The main component of the TileCal back-end electronics is the Read-Out Driver (ROD). The ROD system is placed between the first and the second level trigger and it is the responsible for processing the data gathered by the detector. The principal devices of the RODs are the Digital Signal Processors (DSPs) mounted in the Processing Units (PUs) daughterboards. The architecture and functionality of the RODs are briefly explained. Then, it is presented the ROD system installation in the ATLAS electronics cavern. Currently, the RODs are being used for the detector commissioning. It is detailed the Detector and Verific…
ATLAS TileCal Read Out Driver production
The production tests of the 38 ATLAS TileCal Read Out Drivers (RODs) are presented in this paper. The hardware specifications and firmware functionality of the RODs modules, the test-bench and the test procedure to qualify the boards are described. Finally the performance results, the temperature studies and high rate tests are shown and discussed.
The optical instrumentation of the ATLAS Tile Calorimeter
The purpose of this Note is to describe the optical assembly procedure called here Optical Instrumentation and the quality tests conducted on the assembled units. Altogether, 65 Barrel (or LB) modules were constructed - including one spare - together with 129 Extended Barrel (EB) modules (including one spare). The LB modules were mechanically assembled at JINR (Dubna, Russia) and transported to CERN, where the optical instrumentation was performed with personnel contributed by several Institutes. The modules composing one of the two Extended Barrels (known as EBA) were mechanically assembled in the USA, and instrumented in two US locations (ANL, U. of Michigan), while the modules of the oth…
DSP Online Algorithms for The ATLAS TileCal Read-Out Drivers
TileCal is the hadronic tile calorimeter of the ATLAS experiment at LHC/CERN. The central element of the back-end system of the TileCal detector is the read-out driver (ROD).The main components of the TileCal ROD are the digital signal processors (DSPs) placed on the processing unit (PU) daughterboards. This paper presents a detailed description of the code developed for the DSPs. The code is divided into two different parts: the first part contains the core functionalities and the second part the reconstruction algorithms. The core acts as an operating system and controls configuration, data reception and transmission and synchronization between front-end data and the timing, trigger and c…
Testbeam studies of production modules of the ATLAS Tile Calorimeter
We report test beam studies of {11\,\%} of the production ATLAS Tile Calorimeter modules. The modules were equipped with production front-end electronics and all the calibration systems planned for the final detector. The studies used muon, electron and hadron beams ranging in energy from 3~GeV to 350~GeV. Two independent studies showed that the light yield of the calorimeter was $\sim 70$~pe/GeV, exceeding the design goal by {40\,\%}. Electron beams provided a calibration of the modules at the electromagnetic energy scale. Over 200~calorimeter cells the variation of the response was {2.4\,\%}. The linearity with energy was also measured. Muon beams provided an intercalibration of the respo…
A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test
A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20GeV…
TileCal optical multiplexer board 9U prototype
This paper presents the architecture and the status of the optical multiplexer board (OMB) for the ATLAS/LHC Tile hadronic calorimeter (TileCal). This board will analyze the front-end data CRC to prevent bit and burst errors produced by radiation. Besides, due to its position within the data acquisition chain it will be used to emulate front-end data for tests. The first two prototypes of the final OMB 9U version have been produced at CERN. Detailed design issues and manufacture features of these prototypes are described. These prototypes are being validated whereas some firmware developments are being implemented in the programmable devices of the board. Functional descriptions of the boar…
Algorithms for the ROD DSP of the ATLAS Hadronic Tile Calorimeter
In this paper we present the performance of two algorithms currently running in the Tile Calorimeter Read-Out Driver boards for the commissioning of ATLAS. The first algorithm presented is the so called Optimal Filtering. It reconstructs the deposited energy in the Tile Calorimeter and the arrival time of the data. The second algorithm is the MTag which tags low transverse momentum muons that may escape the ATLAS muon spectrometer first level trigger. Comparisons between online (inside the Read-Out Drivers) and offline implementations are done with an agreement around 99% for the reconstruction of the amplitude using the Optimal Filtering algorithm and a coincidende of 93% between the offli…
Signal integrity studies at optical multiplexer board for TileCal system
6 pages.-- ISI Article Identifier: 000253651800006
Combined performance studies for electrons at the 2004 ATLAS combined test-beam
In 2004 at the ATLAS (A Toroidal LHC ApparatuS) combined test beam, one slice of the ATLAS barrel detector (including an Inner Detector set-up and the Liquid Argon calorimeter) was exposed to particles from the H8 SPS beam line at CERN. It was the first occasion to test the combined electron performance of ATLAS. This paper presents results obtained for the momentum measurement p with the Inner Detector and for the performance of the electron measurement with the LAr calorimeter (energy E linearity and resolution) in the presence of a magnetic field in the Inner Detector for momenta ranging from 20 GeV/c to 100 GeV/c. Furthermore the particle identification capabilities of the Transition Ra…
The ATLAS hadronic tile calorimeter: From construction toward-physics
ATLAS; The Tile Calorimeter, which constitutes the central section of the ATLAS hadronic calorimeter, is a non-compensating sampling device made of iron and scintillating tiles. The construction phase of the calorimeter is nearly complete, and most of the effort now is directed toward the final assembly and commissioning in the underground experimental hall. The layout of the calorimeter and the tasks carried out during construction are described, first with a brief reminder of the requirements that drove the calorimeter design. During the last few years a comprehensive test-beam program has been followed in order to establish the calorimeter electromagnetic energy scale, to study its unifo…
Development of the optical multiplexer board prototype for data acquisition in TileCal experiment
The optical multiplexer board is one of the elements present in the read out chain of the tile calorimeter in ATLAS experiment. Due to radiation effects, two optical fibers with the same data come out from the front end boards to this board, which has to decide in real time which one carries good data and pass them to the read out driver motherboard for processing. This paper describes the design and tests of the first prototype, implemented as a 6U VME64x slave module, including both hardware and firmware aspects. In this last, algorithms for cyclic redundancy code checking are used to make the decision. Besides, the board may be used as a data injector for testing purposes of the read out…
Study of energy response and resolution of the ATLAS barrel calorimeter to hadrons of energies from 20 to 350 GeV
A fully instrumented slice of the ATLAS detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the results of the measurements of the response of the barrel calorimeter to hadrons with energies in the range 20 to 350 GeV and beam impact points and angles corresponding to pseudorapidity values in the range 0.2-0.65 are reported. The results are compared to the predictions of a simulation program using the Geant 4 toolkit.
The Optical Multiplexer Board for the ATLAS Hadronic Tile Calorimeter
This paper presents the architecture and the status of the optical multiplexer board (OMB) for the ATLAS/LHC tile hadronic calorimeter (TileCal). This board will analyze the front-end data CRC to prevent bit and burst errors produced by radiation. Besides, due to its position within the data acquisition chain it will be used to emulate front-end data for tests. The first two prototypes of the final OMB 9U version have been produced at CERN. Detailed design issues and manufacturing features of these prototypes are described. These prototypes are being validated while firmware developments are being implemented in the programmable devices of the board.
Development of the Optical Multiplexer Board Prototype for Data Acquisition in the TileCal System
This paper describes the development of the optical multiplexer board (OMB), also known as PreROD board, for the TileCal readout system in the ATLAS experiment. The aim of this board is to overcome the problems that may arise in the integrity of data due to radiation effects. The solution adopted has been to add redundancy to data transmission and so two optical fibers with the same data come out from the detector front end boards. The OMB has to decide in real time which fiber, eventually, carries data with no errors switching it to the output link connected to the read out driver (ROD) motherboard where data processing takes place. Besides, the board may be also used as a data injector fo…
Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam
The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which i…
Study of the response of the ATLAS central calorimeter to pions of energies from 3 to 9 GeV
Çetin, Serkant Ali (Dogus Author) A fully instrumented slice of the ATLAS central detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the response of the central calorimeters to pions with energies in the range between 3 and 9 GeV is presented. The linearity and the resolution of the combined calorimetry (electromagnetic and hadronic calorimeters) was measured and compared to the prediction of a detector simulation program using the toolkit Geant 4.
Measurement of pion and proton response and longitudinal shower profiles up to 20 nuclear interaction lengths with the ATLAS Tile calorimeter
The response of pions and protons in the energy range of 20–180 GeV, produced at CERN's SPS H8 test-beam line in the ATLAS iron–scintillator Tile hadron calorimeter, has been measured. The test-beam configuration allowed the measurement of the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It was found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion-to-proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion-indu…
A search for new physics in dijet mass and angular distributions in pp collisions at [subscript √s=7] TeV measured with the ATLAS detector
A search for new interactions and resonances produced in LHC proton–proton (pp) collisions at a centre-of-mass energy ps = 7 TeV was performed with the ATLAS detector. Using a dataset with an integrated luminosity of 36 pb−1, dijet mass and angular distributions were measured up to dijet masses of 3.5 TeV and were found to be in good agreement with Standard Model predictions. This analysis sets limits at 95% CL on various models for new physics: an excited quark is excluded for mass between 0.60 and 2.64 TeV, an axigluon hypothesis is excluded for axigluon masses between 0.60 and 2.10 TeV and quantum black holes are excluded in models with six extra space–time dimensions for quantum gravity…
Mechanical construction and installation of the ATLAS tile calorimeter
This paper summarises the mechanical construction andinstallation of the Tile Calorimeter for the ATLASexperiment at the Large Hadron Collider in CERN, Switzerland. The TileCalorimeter is a sampling calorimeter using scintillator as the sensitivedetector and steel as the absorber and covers the central region of the ATLASexperiment up to pseudorapidities ±1.7. The mechanical construction ofthe Tile Calorimeter occurred over a periodof about 10 years beginning in 1995 with the completionof the Technical Design Report and ending in 2006 with the installationof the final module in the ATLAS cavern. Duringthis period approximately 2600 metric tons of steel were transformedinto a laminated struc…