0000000001092900

AUTHOR

S. Gadrat

showing 8 related works from this author

The PHENIX Collaboration

2009

Nuclear physicsPhysicsNuclear and High Energy PhysicsNuclear Physics A
researchProduct

Charged-Particle Multiplicity Density at Midrapidity in Central Pb-Pb Collisions atsNN=2.76  TeV

2010

The first measurement of the charged-particle multiplicity density at midrapidity in Pb-Pb collisions at a center-of-mass energy per nucleon pair root s(NN) = 2.76 TeV is presented. For an event sample corresponding to the most central 5% of the hadronic cross section, the pseudorapidity density of primary charged particles at midrapidity is 1584 +/- 4(stat) +/- 76(syst), which corresponds to 8.3 +/- 0.4(syst) per participating nucleon pair. This represents an increase of about a factor 1.9 relative to pp collisions at similar collision energies, and about a factor 2.2 to central Au-Au collisions at root s(NN) = 0.2 TeV. This measurement provides the first experimental constraint for models…

PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsNuclear TheoryHadronGeneral Physics and AstronomyElementary particle01 natural sciencesCharged particleBaryonNuclear physicsPseudorapidity0103 physical sciencesHigh Energy Physics::ExperimentRapidityNuclear Experiment010306 general physicsNucleonPhysical Review Letters
researchProduct

Suppression of charged particle production at large transverse momentum in central Pb–Pb collisions at sNN=2.76 TeV

2011

Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at root s(NN) = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in |eta| < 0.8 and 0.3 < p(T) < 20 GeV/c are compared to the expectation in pp collisions at the same root s(NN), scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor R-AA. The result indicates only weak medium effects (R-AA approximate to 0.7) in peripheral collisions. In cen…

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsHadronModification factor01 natural sciencesCentral regionSpectral lineCharged particleNuclear physicsCross section (physics)0103 physical sciencesTransverse momentumNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Two-pion Bose–Einstein correlations in central Pb–Pb collisions at sNN=2.76 TeV

2011

The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at root(NN)-N-S = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC. (C) 2010 CERN. Published by Elsevier B.V. All rights reserved.

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsNuclear TheoryBose–Einstein correlationsDecoupling (cosmology)01 natural sciencesNuclear physicsPion0103 physical sciencesHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Elliptic Flow of Charged Particles in Pb-Pb Collisions atsNN=2.76  TeV

2010

We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at root s(NN) p = 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (vertical bar eta vertical bar < 0.8) and transverse momentum range 0.2 < p(t) < 5.0 GeV/c. The elliptic flow signal v(2), measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is 0.087 +/- 0.002(stat) +/- 0.003(syst) in the 40%-50% centrality class. The differential elliptic flow v(2)(p(t)) reaches a maximum of 0.2 near p(t) = 3 GeV/c. Compared to RHIC Au-Au collisions at root s(NN) = 200 GeV, the elliptic f…

PhysicsRange (particle radiation)Particle physicsLarge Hadron Collider010308 nuclear & particles physicsHadronElliptic flowGeneral Physics and Astronomy01 natural sciencesCharged particleNuclear physicsPseudorapidity0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentRapidityNuclear Experiment010306 general physicsPhysical Review Letters
researchProduct

Centrality Dependence of the Charged-Particle Multiplicity Density at Midrapidity in Pb-Pb Collisions atsNN=2.76  TeV

2011

The centrality dependence of the charged-particle multiplicity density at midrapidity in Pb-Pb collisions at root s(NN) = 2: 76 TeV is presented. The charged-particle density normalized per participating nucleon pair increases by about a factor of 2 from peripheral (70%-80%) to central (0%-5%) collisions. The centrality dependence is found to be similar to that observed at lower collision energies. The data are compared with models based on different mechanisms for particle production in nuclear collisions.

Nuclear physicsPhysics010308 nuclear & particles physics0103 physical sciencesGeneral Physics and AstronomyMultiplicity (chemistry)Nuclear Experiment010306 general physicsNucleonCentrality01 natural sciencesCharged particlePhysical Review Letters
researchProduct

The ALICE experiment at the CERN LHC

2008

Journal of Instrumentation 3(08), S08002 (2008). doi:10.1088/1748-0221/3/08/S08002

visible and IR photonsLiquid detectorshigh energyPhotonPhysics::Instrumentation and DetectorsTransition radiation detectorsTiming detectors01 natural sciencesOverall mechanics designParticle identificationSoftware architecturesParticle identification methodsGaseous detectorscluster findingDetector cooling and thermo-stabilizationDetector groundingParticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Special cablesDetector alignment and calibration methodsDetectors and Experimental TechniquesNuclear ExperimentVoltage distributions.Photon detectors for UVInstrumentationMathematical PhysicsQuantum chromodynamicsPhysicsLarge Hadron ColliderSpectrometersPhysicsDetectorcalibration and fitting methodsTransition radiation detectorScintillatorsData processing methodsAnalysis and statistical methodsData reduction methodsParticle physicsCherenkov and transition radiationTime projection chambers610dE/dx detectorsNuclear physicsCalorimetersPattern recognitionGamma detectors0103 physical sciencesddc:610Solid state detectors010306 general physicsMuonInstrumentation for heavy-ion acceleratorsSpectrometerLarge detector systems for particle and astroparticle physics010308 nuclear & particles physicsCERN; LHC; ALICE; heavy ion; QGPCherenkov detectorsComputingVoltage distributionsManufacturingscintillation and light emission processesanalysis and statistical methods; calorimeters; cherenkov and transition radiation; cherenkov detectors; computing; data processing methods; data reduction methods; de/dx detectors; detector alignment and calibration methods; detector cooling and thermo-stabilization; detector design and construction technologies and materials; detector grounding; gamma detectors; gaseous detectors; instrumentation for heavy-ion accelerators; instrumentation for particle accelerators and storage rings - high energy; large detector systems for particle and astroparticle physics; liquid detectors; manufacturing; overall mechanics design; particle identification methods; particle tracking detectors; pattern recognition; cluster finding; calibration and fitting methods; photon detectors for uv; visible and ir photons; scintillators; scintillation and light emission processes; simulation methods and programs; software architectures; solid state detectors; special cables; spectrometers; time projection chambers; timing detectors; transition radiation detectors; voltage distributionsInstrumentation for particle accelerators and storage ringsInstrumentation; Mathematical PhysicsHigh Energy Physics::ExperimentSimulation methods and programsDetector design and construction technologies and materials
researchProduct

The ALICE Collaboration

2009

The production of mesons containing strange quarks (KS, φ) and both singly and doubly strange baryons ( , , and − + +) are measured at mid-rapidity in pp collisions at √ s = 0.9 TeV with the ALICE experiment at the LHC. The results are obtained from the analysis of about 250 k minimum bias events recorded in 2009. Measurements of yields (dN/dy) and transverse momentum spectra at mid-rapidity for inelastic pp collisions are presented. For mesons, we report yields (〈dN/dy〉) of 0.184 ± 0.002(stat.) ± 0.006(syst.) for KS and 0.021 ± 0.004(stat.) ± 0.003(syst.) for φ. For baryons, we find 〈dN/dy〉 = 0.048 ± 0.001(stat.) ± 0.004(syst.) for , 0.047 ± 0.002(stat.) ± 0.005(syst.) for and 0.0101 ± 0.0…

PhysicsStrange quarkNuclear and High Energy PhysicsLarge Hadron ColliderMeson010308 nuclear & particles physics7. Clean energy01 natural sciencesSpectral lineVisual artsNuclear physicsBaryonMinimum biasTransverse momentum0103 physical sciencesHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsALICE (propellant)Nuclear Experiment010306 general physics
researchProduct