0000000001096053

AUTHOR

R. Ent

showing 48 related works from this author

Tensor and Vector Analyzing Powers in the Reaction 2H(e,e’p)

1994

The first experiment to be performed an the internal target facility of NIKHEF-K will be a study of eleclron-induced quasi-elastic proton knock-out from tensor-polarized deuterium. Here, we present the first results from the experimental tests as well as the results of a Monte Carlo simulation, which show the feasibility of the proposed experiment, even at modest luminosities.

PhysicsProtonDeuteriumNuclear TheoryMonte Carlo methodTensorComputational physics
researchProduct

Electron Ion Collider: The Next QCD Frontier - Understanding the glue that binds us all

2016

This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics and, in particular, the focused ten-week program on "Gluons and quark sea a…

Nuclear and High Energy PhysicsParticle physicsNuclear Theorynucl-thhadrons gluons electron-ion colliderFOS: Physical sciencesnucl-ex01 natural sciencesAtomicLinear particle acceleratorgluonsHigh Energy Physics - Experimentlaw.inventionColor-glass condensateNuclear physicsNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)White paperHigh Energy Physics - Phenomenology (hep-ph)Particle and Plasma Physicslawquantum chromodynamics0103 physical sciencesNuclear Physics - ExperimentNuclearNuclear Experiment (nucl-ex)010306 general physicsColliderNuclear ExperimentQuantum chromodynamicsPhysics010308 nuclear & particles physicshep-exMolecularelectron-ion colliderParticle acceleratorhep-phNuclear & Particles PhysicsNATURAL SCIENCES. Physics.GluonPRIRODNE ZNANOSTI. Fizika.High Energy Physics - PhenomenologyhadronsElectron-Ion Collider (EIC)Quark–gluon plasma
researchProduct

A glimpse of gluons through deeply virtual compton scattering on the proton

2017

The internal structure of nucleons (protons and neutrons) remains one of the greatest outstanding problems in modern nuclear physics. By scattering high-energy electrons off a proton we are able to resolve its fundamental constituents and probe their momenta and positions. Here we investigate the dynamics of quarks and gluons inside nucleons using deeply virtual Compton scattering (DVCS)—a highly virtual photon scatters off the proton, which subsequently radiates a photon. DVCS interferes with the Bethe-Heitler (BH) process, where the photon is emitted by the electron rather than the proton. We report herein the full determination of the BH-DVCS interference by exploiting the distinct energ…

Genetics and Molecular Biology (all)PhotonProtonHigh Energy Physics::LatticeNuclear TheoryGeneral Physics and AstronomyVirtual particleparton: distribution functionBiochemistry01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]p: structure functionNuclear Experiment (nucl-ex)[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]lcsh:ScienceNuclear ExperimentNuclear ExperimentPhysicsenergy: highMultidisciplinarystrong interactionChemistry (all)QCompton scattering: form factorphoton: energy spectrumHigh Energy Physics - Phenomenologyconfinementelectron p --> electron p photonchannel cross section: measuredQuarkelectron p: deep inelastic scatteringParticle physicselectron: polarized beamScienceStrong interactionFOS: Physical sciencesBethe-Heitler[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ArticleGeneral Biochemistry Genetics and Molecular Biologyenergy dependencequarkPhysics and Astronomy (all)[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]photon: emissiondeeply virtual Compton scattering0103 physical sciencesstructure010306 general physicsquantum mechanics: interference010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyCompton scatteringGeneral ChemistrygluonsensitivityGluon[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Quark–gluon plasmalcsh:Q[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentholographyChemistry (all); Biochemistry Genetics and Molecular Biology (all); Physics and Astronomy (all)photon: virtualexperimental results
researchProduct

Tensor Analyzing Powers for Quasi-Elastic Electron Scattering from Deuterium

1999

We report on a first measurement of tensor analyzing powers in quasi-elastic electron-deuteron scattering at an average three-momentum transfer of 1.7 fm$^{-1}$. Data sensitive to the spin-dependent nucleon density in the deuteron were obtained for missing momenta up to 150 MeV/$c$ with a tensor polarized $^2$H target internal to an electron storage ring. The data are well described by a calculation that includes the effects of final-state interaction, meson-exchange and isobar currents, and leading-order relativistic contributions.

MOMENTUM DISTRIBUTIONNuclear TheoryGeneral Physics and AstronomyFOS: Physical sciencesElectron01 natural scienceslaw.inventionNuclear physicslawNUCLEON CROSS-SECTIONS0103 physical sciencesTensorSTORAGE-RINGNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsFORM-FACTORPOLARIZED ELECTRONS010308 nuclear & particles physicsScatteringParticle accelerator3. Good healthTARGETDeuteriumIsobarNEUTRONNucleonElectron scattering
researchProduct

Electron elastic scattering off a Tensor-polarized Deuterium Internal Target

2019

The tensor analyzing power Γ20 in elastic electron-deuteron scattering has been measured in the four momentum transfer region between 1.4 and 3.2 fm~l using the Internal Target Facility at NIKHEF. Tensor-polarized deuterium is produced in an Atomic Beam Source and injected into a storage cell. Scattered electrons and recoil deuterons were detected in coincidence with two large acceptance nonmagnetic detectors.

Elastic scatteringPhysicsRecoilDeuteriumScatteringNuclear TheoryFour-momentumElectronTensorAtomic physicsNuclear ExperimentCoincidenceHNPS Proceedings
researchProduct

Rosenbluth separation of the $\pi^0$ Electroproduction Cross Section off the Neutron

2017

We report the first longitudinal/transverse separation of the deeply virtual exclusive $\pi^0$ electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions $d\sigma_L/dt$, $d\sigma_T/dt$, $d\sigma_{LT}/dt$ and $d\sigma_{TT}/dt$ are extracted as a function of the momentum transfer to the recoil system at $Q^2$=1.75 GeV$^2$ and $x_B$=0.36. The $ed \to ed\pi^0$ cross sections are found compatible with the small values expected from theoretical models. The $en \to en\pi^0$ cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity GPDs of the nucle…

longitudinalNuclear Theoryn: structure function[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]momentum transfer dependenceelectron n: scatteringHigh Energy Physics - Experimentgeneralized parton distribution: transversity[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]hard exclusive electroproductionrecoil[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]polarization: transverse[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear ExperimentNuclear Experimentmesonsflavorgeneralized parton distributionsscatteringgeneralized parton distributions; hard exclusive electroproduction; mesons; scatteringdeuteron: structure functionelectron deuteron --> electron deuteron pi0electron deuteron: deep inelastic scatteringnucleon: generalized parton distributionphoton: polarizationcoherencepi0: electroproductionHigh Energy Physics::Experimentexperimental results
researchProduct

Electron Ion Collider: The Next QCD Frontier: Understanding the glue that binds us all

2016

International audience; This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics over the past decades and, in particular, the focus…

Nuclear and High Energy Physicsdesign [accelerator]nucl-th[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]parton: distribution functionnucleus: structure functionpolarized beamstructure function: spin[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-exstructure function [nucleon]Atomicproposed [colliding beams]design [detector]Particle and Plasma Physicsquantum chromodynamics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Nuclearsaturation [gluon]colliding beams [electron nucleon]Hardware_REGISTER-TRANSFER-LEVELIMPLEMENTATIONdetector: designaccelerator: designhep-exnew physicsMolecularhep-phelectron nucleon: colliding beamsnucleon: structure functionstructure function [nucleus]Nuclear & Particles PhysicseRHICTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESelectron nucleus: colliding beamscolliding beams: proposedTheoryofComputation_LOGICSANDMEANINGSOFPROGRAMS[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]gluon: saturationELICspin [structure function]Software_PROGRAMMINGLANGUAGEScolliding beams [electron nucleus]distribution function [parton]Hardware_LOGICDESIGNJefferson Lab
researchProduct

"Table 28" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 36" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 17" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 1" of "$\Lambda$ polarization in associated K$^+$ - $\Lambda$ electro-production"

2000

LAMBDA polarization, with respect to the p_gamma x p_k axis.

POLMathematics::CombinatoricsStrange productionElectron productionComputer Science::Discrete Mathematics2.91PolarizationE- P --> LAMBDA K+ E-ExclusiveComputer Science::Data Structures and Algorithms
researchProduct

"Table 40" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 39" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 9" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 22" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 31" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 34" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 33" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 6" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 11" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 37" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 29" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 1" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 21" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 25" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 2" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 32" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 5" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 16" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 24" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 23" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 14" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 26" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 20" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 8" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 10" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 13" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 27" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 38" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 35" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 15" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 30" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 19" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 12" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 4" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 3" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 18" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 7" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct