0000000001097144
AUTHOR
Marco Oestereich
Force probe simulations using a hybrid scheme with virtual sites.
Hybrid simulations, in which a part of the system is treated with atomistic resolution and the remainder is represented on a coarse-grained level, allow for fast sampling while using the accuracy of atomistic force fields. We apply a hybrid scheme to study the mechanical unfolding and refolding of a molecular complex using force probe molecular dynamics (FPMD) simulations. The degrees of freedom of the solvent molecules are treated in a coarse-grained manner while atomistic resolution is retained for the solute. The coupling between the solvent and the solute is provided using virtual sites. We test two different common coarse-graining procedures, the iterative Boltzmann inversion method an…
Force probe simulations using an adaptive resolution scheme
Molecular simulations of the forced unfolding and refolding of biomolecules or molecular complexes allow to gain important kinetic, structural and thermodynamic information about the folding process and the underlying energy landscape. In force probe molecular dynamics (FPMD) simulations, one pulls one end of the molecule with a constant velocity in order to induce the relevant conformational transitions. Since the extended configuration of the system has to fit into the simulation box together with the solvent such simulations are very time consuming. Here, we apply a hybrid scheme in which the solute is treated with atomistic resolution and the solvent molecules far away from the solute a…