Improving table compression with combinatorial optimization
We study the problem of compressing massive tables within the partition-training paradigm introduced by Buchsbaum et al. [SODA'00], in which a table is partitioned by an off-line training procedure into disjoint intervals of columns, each of which is compressed separately by a standard, on-line compressor like gzip. We provide a new theory that unifies previous experimental observations on partitioning and heuristic observations on column permutation, all of which are used to improve compression rates. Based on the theory, we devise the first on-line training algorithms for table compression, which can be applied to individual files, not just continuously operating sources; and also a new, …