Acoustic Wave Properties in Footpoints of Coronal Loops in 3D MHD Simulations
Acoustic waves excited in the photosphere and below might play an integral part in the heating of the solar chromosphere and corona. However, it is yet not fully clear how much of the initially acoustic wave flux reaches the corona and in what form. We investigate the wave propagation, damping, transmission, and conversion in the lower layers of the solar atmosphere using 3D numerical MHD simulations. A model of a gravitationally stratified expanding straight coronal loop, stretching from photosphere to photosphere, is perturbed at one footpoint by an acoustic driver with a period of 370 seconds. For this period acoustic cutoff regions are present below the transition region (TR). About 2% …