Acoustic Wave Properties in Footpoints of Coronal Loops in 3D MHD Simulations
Acoustic waves excited in the photosphere and below might play an integral part in the heating of the solar chromosphere and corona. However, it is yet not fully clear how much of the initially acoustic wave flux reaches the corona and in what form. We investigate the wave propagation, damping, transmission, and conversion in the lower layers of the solar atmosphere using 3D numerical MHD simulations. A model of a gravitationally stratified expanding straight coronal loop, stretching from photosphere to photosphere, is perturbed at one footpoint by an acoustic driver with a period of 370 seconds. For this period acoustic cutoff regions are present below the transition region (TR). About 2% …
Probing the physics of the solar atmosphere with the Multi-slit Solar Explorer (MUSE): I. Coronal Heating
The Multi-slit Solar Explorer (MUSE) is a proposed NASA MIDEX mission, currently in Phase A, composed of a multi-slit EUV spectrograph (in three narrow spectral bands centered around 171A, 284A, and 108A) and an EUV context imager (in two narrow passbands around 195A and 304A). MUSE will provide unprecedented spectral and imaging diagnostics of the solar corona at high spatial (<0.5 arcsec), and temporal resolution (down to ~0.5s) thanks to its innovative multi-slit design. By obtaining spectra in 4 bright EUV lines (Fe IX 171A , Fe XV 284A, Fe XIX-Fe XXI 108A) covering a wide range of transition region and coronal temperatures along 37 slits simultaneously, MUSE will for the first time …