Shrinking and boundedly complete Schauder frames in Fréchet spaces
We study Schauder frames in Fréchet spaces and their duals, as well as perturbation results. We define shrinking and boundedly complete Schauder frames on a locally convex space, study the duality of these two concepts and their relation with the reflexivity of the space. We characterize when an unconditional Schauder frame is shrinking or boundedly complete in terms of properties of the space. Several examples of concrete Schauder frames in function spaces are also presented.