0000000001100420
AUTHOR
G. Mínguez Espallargas
Isoreticular two-dimensional magnetic coordination polymers prepared through pre-synthetic ligand functionalization
Chemical functionalization is a powerful approach to tailor the physical and chemical properties of two-dimensional (2D) materials, increase their processability and stability, tune their functionalities and, even, create new 2D materials. This is typically achieved through post-synthetic functionalization by anchoring molecules on the surface of an exfoliated 2D crystal, but it inevitably alters the long-range structural order of the material. Here we present a pre-synthetic approach that allows the isolation of crystalline, robust and magnetic functionalized monolayers of coordination polymers. A series of five isostructural layered magnetic coordination polymers based on Fe(ii) centres a…
Tunable crossover between one- and three-dimensional magnetic dynamics inCoIIsingle-chain magnets organized by halogen bonding
Low-temperature magnetometry, ac susceptibility, and calorimetry have been employed to study Co-based single-chain magnets (SCMs) organized through halogen bonding. Magnetic hysteresis and maxima in the dc and ac susceptibilities, respectively, confirm the SCM behavior of the system. Several characteristic magnetic relaxation regimes are observed at different temperatures, which can be associated with both intra- and interchain exchange interactions. Remarkably, tweaking the rate at which an external magnetic field is swept along the axis of the chains enables a controlled transition between the one- and three-dimensional dynamics. Experiments on an isostructural Co-based SCM system crystal…
Single-crystal EPR spectroscopy of a Co(II) single-chain magnet
Abstract An electron paramagnetic resonance (EPR) study of a single crystal of Co II -based single-chain magnets (SCM) is presented. Discrete resonant absorptions are associated to the presence of magnetic domains within the chains of finite lengths determined by a competition between intra-chain exchange interactions and thermally excited single spin fluctuations. The results are interpreted as a transition from single spin dynamics at high temperature ( T ∼20 K), associated to the Kramers doublet ground state of the individual Co II ions, to archetypical SCM dynamics at low temperatures, where intra-chain correlations form long magnetic domains, whose average length is imposed by the con…
A rare example of nickel(ii) chains based on a heteroscorpionate-like ligand with quadruple imidazolyl interactions
The first nickel(ii) complex with the heteroscorpionate-like bridging ligand DIMMAL (2-di1H-2-imidazolylmethylmalonate), [Ni(DIMMAL)(H2O)3]n·3nH2O (1), is a one-dimensional coordination polymer whose structure shows regular Ni(ii) chains with H-bonding inter-chain interactions and a rare example of a Quadruple Imidazolyl Embrace (QIE). The Ni(ii) chain shows a weak antiferromagnetic interaction that can be modelled with a regular S = 1 chain model including a zero field splitting with g = 2.270, J = -1.5 cm(-1) and D = -2.26 cm(-1).
In and out: crystal engineering for reversible iodine uptake
In this issue of Acta Crystallographica Section B, Moghzi et al. (2020) report the chemical design of a metal-organic compound with an outstanding iodine (I2) sorption capability. Sequestration of I2, an extremely volatile gas, has important applications in terms of controlling radioactive gases, as various radionuclides of I2 are released during the fission of nuclear fuels. Thus, the preparation of porous materials that can efficiently capture and store I2 is of importance not only from an academic point of view, but also for real-life applications.
Coordination Polymer Flexibility Leads to Polymorphism and Enables a Crystalline Solid-Vapour Reaction: A Multi-technique Mechanistic Study.
Despite an absence of conventional porosity, the 1D coordination polymer [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)3 ] (1; TMP=tetramethylpyrazine) can absorb small alcohols from the vapour phase, which insert into AgO bonds to yield coordination polymers [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)3 (ROH)2 ] (1-ROH; R=Me, Et, iPr). The reactions are reversible single-crystal-to-single-crystal transformations. Vapour-solid equilibria have been examined by gas-phase IR spectroscopy (K=5.68(9)×10(-5) (MeOH), 9.5(3)×10(-6) (EtOH), 6.14(5)×10(-5) (iPrOH) at 295 K, 1 bar). Thermal analyses (TGA, DSC) have enabled quantitative comparison of two-step reactions 1-ROH→1→2, in which 2 is the 2D coordination polymer [Ag4 (O2 C…
Snapshots of a solid-state transformation: coexistence of three phases trapped in one crystal† †Electronic supplementary information (ESI) available: X-Ray crystallography, DSC, optical microscopy and Raman spectroscopy experimental details; crystallographic tables and figures; TOPOs diagrams; Fo–Fc plots; powder-X diffractograms; magnetic susceptibility; Raman and optical microscopy. CCDC 1053051–1053059. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc04287a
Solvent extrusion leads to crystallographic–magnetic transition within a molecular complex via an intermediate that can be trapped and characterized.
Snapshots of a solid-state transformation: Coexistence of three phases trapped in one crystal
Crystal-to-crystal transformations have been crucial in the understanding of solid-state processes, since these may be studied in detail by means of single crystal X-ray diffraction (SCXRD) techniques. The description of the mechanisms and potential intermediates of those processes remains very challenging. In fact, solid-state transient states have rarely been observed, at least to a sufficient level of detail. We have investigated the process of guest extrusion from the non-porous molecular material [Fe(bpp)(HL)](ClO)·1.5CHO (bpp = 2,6-bis(pyrazol-3-yl)pyridine; HL = 2,6-bis(5-(2-methoxyphenyl)-pyrazol-3-yl)pyridine; CHO = acetone), which occurs through ordered diffusion of acetone in a c…
CCDC 1053057: Experimental Crystal Structure Determination
Related Article: G. Aromí, C. M. Beavers, J. Sánchez Costa, G. A. Craig, G. Mínguez Espallargas, A. Orera, O. Roubeau|2016|Chemical Science|7|2907|doi:10.1039/C5SC04287A
CCDC 1849147: Experimental Crystal Structure Determination
Related Article: J. López-Cabrelles, S. Mañas-Valero, I. J. Vitóriza-Yrezábal, P. J. Bereciartua, J. A. Rodríguez-Velamazán, J. C. Waerenborgh, B. J. C. Vieira, D. Davidovikj, P. G. Steeneken, H. S. J. van der Zant, G. Mínguez Espallargas, E. Coronado|2018|Nature Chemistry|10|1001|doi:10.1038/s41557-018-0113-9
CCDC 1582347: Experimental Crystal Structure Determination
Related Article: J. López-Cabrelles, S. Mañas-Valero, I. J. Vitóriza-Yrezábal, P. J. Bereciartua, J. A. Rodríguez-Velamazán, J. C. Waerenborgh, B. J. C. Vieira, D. Davidovikj, P. G. Steeneken, H. S. J. van der Zant, G. Mínguez Espallargas, E. Coronado|2018|Nature Chemistry|10|1001|doi:10.1038/s41557-018-0113-9
CCDC 1053055: Experimental Crystal Structure Determination
Related Article: G. Aromí, C. M. Beavers, J. Sánchez Costa, G. A. Craig, G. Mínguez Espallargas, A. Orera, O. Roubeau|2016|Chemical Science|7|2907|doi:10.1039/C5SC04287A
CCDC 1053058: Experimental Crystal Structure Determination
Related Article: G. Aromí, C. M. Beavers, J. Sánchez Costa, G. A. Craig, G. Mínguez Espallargas, A. Orera, O. Roubeau|2016|Chemical Science|7|2907|doi:10.1039/C5SC04287A
CCDC 1053059: Experimental Crystal Structure Determination
Related Article: G. Aromí, C. M. Beavers, J. Sánchez Costa, G. A. Craig, G. Mínguez Espallargas, A. Orera, O. Roubeau|2016|Chemical Science|7|2907|doi:10.1039/C5SC04287A
CCDC 996415: Experimental Crystal Structure Determination
Related Article: C. J. Gómez-García, E. Escrivà, G. Mínguez Espallargas, J. J. Borrás-Almenar, L. Soto, A. Sancho, J. García-Lozano, C. Ramírez de Arellano|2014|Dalton Trans.|43|11371|doi:10.1039/C4DT01099J
CCDC 1582349: Experimental Crystal Structure Determination
Related Article: J. López-Cabrelles, S. Mañas-Valero, I. J. Vitóriza-Yrezábal, P. J. Bereciartua, J. A. Rodríguez-Velamazán, J. C. Waerenborgh, B. J. C. Vieira, D. Davidovikj, P. G. Steeneken, H. S. J. van der Zant, G. Mínguez Espallargas, E. Coronado|2018|Nature Chemistry|10|1001|doi:10.1038/s41557-018-0113-9
CCDC 1053051: Experimental Crystal Structure Determination
Related Article: G. Aromí, C. M. Beavers, J. Sánchez Costa, G. A. Craig, G. Mínguez Espallargas, A. Orera, O. Roubeau|2016|Chemical Science|7|2907|doi:10.1039/C5SC04287A
CCDC 1053054: Experimental Crystal Structure Determination
Related Article: G. Aromí, C. M. Beavers, J. Sánchez Costa, G. A. Craig, G. Mínguez Espallargas, A. Orera, O. Roubeau|2016|Chemical Science|7|2907|doi:10.1039/C5SC04287A
CCDC 1053053: Experimental Crystal Structure Determination
Related Article: G. Aromí, C. M. Beavers, J. Sánchez Costa, G. A. Craig, G. Mínguez Espallargas, A. Orera, O. Roubeau|2016|Chemical Science|7|2907|doi:10.1039/C5SC04287A
CCDC 1582350: Experimental Crystal Structure Determination
Related Article: J. López-Cabrelles, S. Mañas-Valero, I. J. Vitóriza-Yrezábal, P. J. Bereciartua, J. A. Rodríguez-Velamazán, J. C. Waerenborgh, B. J. C. Vieira, D. Davidovikj, P. G. Steeneken, H. S. J. van der Zant, G. Mínguez Espallargas, E. Coronado|2018|Nature Chemistry|10|1001|doi:10.1038/s41557-018-0113-9
CCDC 1053052: Experimental Crystal Structure Determination
Related Article: G. Aromí, C. M. Beavers, J. Sánchez Costa, G. A. Craig, G. Mínguez Espallargas, A. Orera, O. Roubeau|2016|Chemical Science|7|2907|doi:10.1039/C5SC04287A
CCDC 1582348: Experimental Crystal Structure Determination
Related Article: J. López-Cabrelles, S. Mañas-Valero, I. J. Vitóriza-Yrezábal, P. J. Bereciartua, J. A. Rodríguez-Velamazán, J. C. Waerenborgh, B. J. C. Vieira, D. Davidovikj, P. G. Steeneken, H. S. J. van der Zant, G. Mínguez Espallargas, E. Coronado|2018|Nature Chemistry|10|1001|doi:10.1038/s41557-018-0113-9
CCDC 1053056: Experimental Crystal Structure Determination
Related Article: G. Aromí, C. M. Beavers, J. Sánchez Costa, G. A. Craig, G. Mínguez Espallargas, A. Orera, O. Roubeau|2016|Chemical Science|7|2907|doi:10.1039/C5SC04287A