0000000001100643
AUTHOR
Yann Fenard
An experimental and kinetic modeling study on the oxidation of 1,3-dioxolane
International audience; The modern catalytic or enzymatic advances allow the production of novel biofuel. Among them, 1,3dioxolane can be produced from formaldehyde and ethylene glycol, both can be obtained from biomass. In this study, the oxidation of 1,3-dioxolane is studied at stoichiometric conditions. The ignition delay times of 1,3-dioxolane/O 2 /inert mixtures were measured in a shock tube and in a rapid compression machine at pressures of 20 to 40 bar and temperatures ranging from 630 to 1300 K. The pressure profiles recorded in the rapid compression machine show a first stage of ignition enlightening the influence of the low temperature chemistry of combustion. Furthermore, mole fr…
An experimental and kinetic modeling study on the reactivity of 1,3-dioxolane under engine-relevant condition
International audience
An experimental and kinetic modeling study on the reactivity of 1,3-dioxolane under engine relevant conditions
International audience