0000000001100698
AUTHOR
P. Musial
Dual of the Class of HKr Integrable Functions
We define for 1 <= r < infinity a norm for the class of functions which are Henstock-Kurzweil integrable in the L-r sense. We then establish that the dual in this norm is isometrically isomorphic to L-r' and is therefore a Banach space, and in the case r = 2, a Hilbert space. Finally, we give results pertaining to convergence and weak convergence in this space.
Integration by parts for the Lr Henstock-Kurzweil integral
Musial and Sagher [4] described a Henstock-Kurzweil type integral that integrates Lr-derivatives. In this article, we develop a product rule for the Lr-derivative and then an integration by parts formula.
On Descriptive Characterizations of an Integral Recovering a Function from Its $$L^r$$-Derivative
The notion of Lr-variational measure generated by a function F ∈ Lr[a, b] is introduced and, in terms of absolute continuity of this measure, a descriptive characterization of the HKr -integral recovering a function from its Lr-derivative is given. It is shown that the class of functions generating absolutely continuous Lr-variational measure coincides with the class of ACGr -functions which was introduced earlier, and that both classes coincide with the class of the indefinite HKr-integrals under the assumption of Lr-differentiability almost everywhere of the functions consisting these classes