0000000001100814

AUTHOR

Diego Bueso

showing 7 related works from this author

Nonlinear PCA for Spatio-Temporal Analysis of Earth Observation Data

2020

Remote sensing observations, products, and simulations are fundamental sources of information to monitor our planet and its climate variability. Uncovering the main modes of spatial and temporal variability in Earth data is essential to analyze and understand the underlying physical dynamics and processes driving the Earth System. Dimensionality reduction methods can work with spatio-temporal data sets and decompose the information efficiently. Principal component analysis (PCA), also known as empirical orthogonal functions (EOFs) in geophysics, has been traditionally used to analyze climatic data. However, when nonlinear feature relations are present, PCA/EOF fails. In this article, we pro…

Earth observationComputer scienceFeature extraction0211 other engineering and technologiesFOS: Physical sciencesEmpirical orthogonal functions02 engineering and technologyKernel principal component analysisPhysics::GeophysicsData cubePhysics - GeophysicsKernel (linear algebra)symbols.namesakeElectrical and Electronic EngineeringPhysics::Atmospheric and Oceanic Physics021101 geological & geomatics engineeringDimensionality reductionHilbert spaceComputational Physics (physics.comp-ph)Geophysics (physics.geo-ph)Data setPhysics - Atmospheric and Oceanic Physics13. Climate actionKernel (statistics)Atmospheric and Oceanic Physics (physics.ao-ph)Principal component analysissymbolsGeneral Earth and Planetary SciencesSpatial variabilityAlgorithmPhysics - Computational Physics
researchProduct

Nonlinear Complex PCA for spatio-temporal analysis of global soil moisture

2020

Soil moisture (SM) is a key state variable of the hydrological cycle, needed to monitor the effects of a changing climate on natural resources. Soil moisture is highly variable in space and time, presenting seasonalities, anomalies and long-term trends, but also, and important nonlinear behaviours. Here, we introduce a novel fast and nonlinear complex PCA method to analyze the spatio-temporal patterns of the Earth's surface SM. We use global SM estimates acquired during the period 2010-2017 by ESA's SMOS mission. Our approach unveils both time and space modes, trends and periodicities unlike standard PCA decompositions. Results show the distribution of the total SM variance among its differ…

State variable010504 meteorology & atmospheric sciencesFOS: Physical sciences020206 networking & telecommunications02 engineering and technology15. Life on landAtmospheric sciences01 natural sciencesPhysics::GeophysicsKernel (linear algebra)Nonlinear systemVariable (computer science)Physics - Atmospheric and Oceanic Physics13. Climate actionPrincipal component analysisAtmospheric and Oceanic Physics (physics.ao-ph)0202 electrical engineering electronic engineering information engineeringEnvironmental scienceWater cycleTime seriesWater contentPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciences
researchProduct

Explicit Granger causality in kernel Hilbert spaces

2020

Granger causality (GC) is undoubtedly the most widely used method to infer cause-effect relations from observational time series. Several nonlinear alternatives to GC have been proposed based on kernel methods. We generalize kernel Granger causality by considering the variables cross-relations explicitly in Hilbert spaces. The framework is shown to generalize the linear and kernel GC methods, and comes with tighter bounds of performance based on Rademacher complexity. We successfully evaluate its performance in standard dynamical systems, as well as to identify the arrow of time in coupled R\"ossler systems, and is exploited to disclose the El Ni\~no-Southern Oscillation (ENSO) phenomenon f…

Series (mathematics)Dynamical systems theoryHilbert spaceFOS: Physical sciencesNonlinear Sciences - Chaotic Dynamics01 natural sciences010305 fluids & plasmassymbols.namesakeKernel methodGranger causalityPhysics - Data Analysis Statistics and ProbabilityKernel (statistics)Arrow of time0103 physical sciencesRademacher complexitysymbolsApplied mathematicsChaotic Dynamics (nlin.CD)010306 general physicsData Analysis Statistics and Probability (physics.data-an)Mathematics
researchProduct

Revisiting impacts of MJO on soil moisture: a causality perspective

2020

researchProduct

Understanding Climate Impacts on Vegetation with Gaussian Processes in Granger Causality

2020

Global warming is leading to unprecedented changes in our planet, with great societal, economical and environmental implications, especially with the growing demand of biofuels and food. Assessing the impact of climate on vegetation is of pressing need. We approached the attribution problem with a novel nonlinear Granger causal (GC) methodology and used a large data archive of remote sensing satellite products, environmental and climatic variables spatio-temporally gridded over more than 30 years. We generalize kernel Granger causality by considering the variables cross-relations explicitly in Hilbert spaces, and use the covariance in Gaussian processes. The method generalizes the linear an…

FOS: Computer and information sciencesPhysics - Atmospheric and Oceanic PhysicsComputer Science - Machine LearningAtmospheric and Oceanic Physics (physics.ao-ph)FOS: Physical sciencesMachine Learning (cs.LG)
researchProduct

Extraction Of Smos Soil Moisture And Ocean Salinity Main Features Across The Mediterranean Region Over The Last Decade

2018

med 2018, 11-12 December 2018, Frascati, Rome, Italy

researchProduct

Revisiting impacts of MJO on soil moisture: a causality perspective

researchProduct