0000000001101546

AUTHOR

M. Romagnoni

showing 4 related works from this author

Enhancement of Bremsstrahlung Radiation Generated by Electron Beam Interaction in an Axially-Oriented Scintillator Crystal (Poster)

2019

Since their discovery, scintillator materials have played an important role in nuclear and particle physics, as well as in medical and industrial imaging. [...]

Physics::Computational PhysicsMaterials sciencebusiness.industryPhysics::Instrumentation and DetectorsBremsstrahlunglcsh:AScintillatorComputer Science::Numerical AnalysisIndustrial imagingCrystalOpticsn/aCathode raylcsh:General WorksbusinessAxial symmetryProceedings
researchProduct

Innovative remotely-controlled bending device for thin silicon and germanium crystals

2020

Steering of negatively charged particle beams below 1 GeV has demonstrated to be possible with thin bent silicon and germanium crystals. A newly designed mechanical holder was used for bending crystals, since it allows a remotely-controlled adjustment of crystal bending and compensation of unwanted torsion. Bent crystals were installed and tested at the MAMI Mainz MIcrotron to achieve steering of 0.855-GeV electrons at different bending radii. We report the description and characterization of the innovative bending device developed at INFN Laboratori Nazionali di Legnaro (LNL).

Physics - Instrumentation and DetectorsMaterials scienceAccelerator ApplicationsSiliconBeam OpticsNegatively charged particleAccelerator Applications; Beam Optics; Instrumentation for particle accelerators and storage rings - high energy (linear accelerators synchrotrons); Instrumentation for particle accelerators and storage rings - lowenergy (linear accelerators cyclotrons electrostatic accelerators); Instrumentation; Mathematical PhysicsBent molecular geometryFOS: Physical scienceschemistry.chemical_elementGermaniumElectron01 natural sciencesInstrumentation for particle accelerators and storage rings - lowenergy (linear accelerators cyclotrons electrostatic accelerators)Instrumentation for particle accelerators and storage rings - high energy (linear accelerators synchrotrons)NOCrystal0103 physical sciencesNuclear Experiment010306 general physicsInstrumentationMicrotronMathematical Physics010308 nuclear & particles physicsbusiness.industryTorsion (mechanics)Instrumentation and Detectors (physics.ins-det)chemistryPhysics::Accelerator PhysicsOptoelectronicsbusinessJournal of Instrumentation
researchProduct

Progress towards the first measurement of charm baryon dipole moments

2021

Electromagnetic dipole moments of short-lived particles are sensitive to physics within and beyond the Standard Model of particle physics but have not been accessible experimentally to date. To perform such measurements it has been proposed to exploit the spin precession of channeled particles in bent crystals at the LHC. Progress that enables the first measurement of charm baryon dipole moments is reported. In particular, the design and characterization on beam of silicon and germanium bent crystal prototypes, the optimization of the experimental setup, and advanced analysis techniques are discussed. Sensitivity studies show that first measurements of $\Lambda_c^+$ and $\Xi_c^+$ baryon dip…

Particle physicsmagnetic momentPhysics beyond the Standard ModelBent molecular geometryFOS: Physical scienceselectric dipole moment01 natural sciencescystal channelingNOHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)precession0103 physical sciencesCharm (quantum number)Sensitivity (control systems)010306 general physicsSpin (physics)particlesPhysicspolarizationLarge Hadron Colliderprotons010308 nuclear & particles physicscoherent interactionsBaryonHigh Energy Physics - PhenomenologyDipoleBent crystals; cystal channeling; electric dipole moment; baryonsHigh Energy Physics::Experimentmagnetic moment bent crystals coherent interactions particles precession protons polarizationBent crystalsbaryons
researchProduct

Enhanced electromagnetic radiation in oriented scintillating crystals at the 100-MeV and sub-GeV scales

2022

NO
researchProduct