0000000001101651

AUTHOR

Maksim Kravtsev

showing 6 related works from this author

Quantum Finite One-Counter Automata

1999

In this paper the notion of quantum finite one-counter automata (QF1CA) is introduced. Introduction of the notion is similar to that of the 2-way quantum finite state automata in [1]. The well-formedness conditions for the automata are specified ensuring unitarity of evolution. A special kind of QF1CA, called simple, that satisfies the well-formedness conditions is introduced. That allows specify rules for constructing such automata more naturally and simpler than in general case. Possible models of language recognition by QF1CA are considered. The recognition of some languages by QF1CA is shown and compared with recognition by probabilistic counterparts.

Nested wordTheoretical computer scienceFinite-state machineComputer scienceω-automatonAutomatonMobile automatonDeterministic finite automatonDeterministic automatonContinuous spatial automatonProbabilistic automatonQuantum finite automataAutomata theoryNondeterministic finite automatonQuantum cellular automaton
researchProduct

On a class of languages recognizable by probabilistic reversible decide-and-halt automata

2009

AbstractWe analyze the properties of probabilistic reversible decide-and-halt automata (DH-PRA) and show that there is a strong relationship between DH-PRA and 1-way quantum automata. We show that a general class of regular languages is not recognizable by DH-PRA by proving that two “forbidden” constructions in minimal deterministic automata correspond to languages not recognizable by DH-PRA. The shown class is identical to a class known to be not recognizable by 1-way quantum automata. We also prove that the class of languages recognizable by DH-PRA is not closed under union and other non-trivial Boolean operations.

Discrete mathematicsClass (set theory)Quantum automataNested wordGeneral Computer ScienceProbabilistic logicAutomatonTheoretical Computer ScienceRegular languageDeterministic automatonProbabilistic automatonQuantum finite automataProbabilistic automataComputer Science::Formal Languages and Automata TheoryMathematicsComputer Science(all)Theoretical Computer Science
researchProduct

Quantum Finite Automata and Probabilistic Reversible Automata: R-trivial Idempotent Languages

2011

We study the recognition of R-trivial idempotent (R1) languages by various models of "decide-and-halt" quantum finite automata (QFA) and probabilistic reversible automata (DH-PRA). We introduce bistochastic QFA (MM-BQFA), a model which generalizes both Nayak's enhanced QFA and DH-PRA. We apply tools from algebraic automata theory and systems of linear inequalities to give a complete characterization of R1 languages recognized by all these models. We also find that "forbidden constructions" known so far do not include all of the languages that cannot be recognized by measure-many QFA.

Discrete mathematicsNested wordIdempotenceQuantum finite automataAutomata theoryComputer Science::Computational ComplexityAlgebraic numberω-automatonCharacterization (mathematics)Computer Science::Formal Languages and Automata TheoryMathematicsAutomaton
researchProduct

Probabilistic Reversible Automata and Quantum Automata

2002

To study relationship between quantum finite automata and probabilistic finite automata, we introduce a notion of probabilistic reversible automata (PRA, or doubly stochastic automata). We find that there is a strong relationship between different possible models of PRA and corresponding models of quantum finite automata. We also propose a classification of reversible finite 1-way automata.

Discrete mathematicsProbabilistic finite automataNested wordComputer scienceTimed automatonω-automatonNonlinear Sciences::Cellular Automata and Lattice GasesMobile automatonAutomatonStochastic cellular automatonDeterministic finite automatonDFA minimizationContinuous spatial automatonAutomata theoryQuantum finite automataNondeterministic finite automatonComputer Science::Formal Languages and Automata TheoryQuantum cellular automaton
researchProduct

Quantum versus Probabilistic One-Way Finite Automata with Counter

2001

The paper adds the one-counter one-way finite automaton [6] to the list of classical computing devices having quantum counterparts more powerful in some cases. Specifically, two languages are considered, the first is not recognizable by deterministic one-counter one-way finite automata, the second is not recognizable with bounded error by probabilistic one-counter one-way finite automata, but each recognizable with bounded error by a quantum one-counter one-way finite automaton. This result contrasts the case of one-way finite automata without counter, where it is known [5] that the quantum device is actually less powerful than its classical counterpart.

TheoryofComputation_COMPUTATIONBYABSTRACTDEVICESNested wordComputer scienceTimed automatonBüchi automatonω-automatonNondeterministic finite automaton with ε-movesTuring machinesymbols.namesakeDFA minimizationDeterministic automatonContinuous spatial automatonQuantum finite automataDeterministic system (philosophy)Two-way deterministic finite automatonNondeterministic finite automatonDiscrete mathematicsFinite-state machineQuantum dot cellular automatonNonlinear Sciences::Cellular Automata and Lattice GasesMobile automatonTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDeterministic finite automatonProbabilistic automatonsymbolsAutomata theoryComputer Science::Formal Languages and Automata TheoryQuantum cellular automaton
researchProduct

Quantum Finite Automata and Probabilistic Reversible Automata: R-trivial Idempotent Languages

2011

We study the recognition of R-trivial idempotent (R1) languages by various models of "decide-and-halt" quantum finite automata (QFA) and probabilistic reversible automata (DH-PRA). We introduce bistochastic QFA (MM-BQFA), a model which generalizes both Nayak's enhanced QFA and DH-PRA. We apply tools from algebraic automata theory and systems of linear inequalities to give a complete characterization of R1 languages recognized by all these models. We also find that "forbidden constructions" known so far do not include all of the languages that cannot be recognized by measure-many QFA.

FOS: Computer and information sciencesQuantum PhysicsFormal Languages and Automata Theory (cs.FL)FOS: Physical sciencesComputer Science - Formal Languages and Automata TheoryComputer Science::Computational ComplexityQuantum Physics (quant-ph)Computer Science::Formal Languages and Automata Theory
researchProduct