0000000001102551

AUTHOR

Anna C.e. Hurst

0000-0002-9765-9703

showing 2 related works from this author

De novo loss-of-function KCNMA1 variants are associated with a new multiple malformation syndrome and a broad spectrum of developmental and neurologi…

2019

Abstract KCNMA1 encodes the large-conductance Ca2+- and voltage-activated K+ (BK) potassium channel α-subunit, and pathogenic gain-of-function variants in this gene have been associated with a dominant form of generalized epilepsy and paroxysmal dyskinesia. Here, we genetically and functionally characterize eight novel loss-of-function (LoF) variants of KCNMA1. Genome or exome sequencing and the participation in the international Matchmaker Exchange effort allowed for the identification of novel KCNMA1 variants. Patch clamping was used to assess functionality of mutant BK channels. The KCNMA1 variants p.(Ser351Tyr), p.(Gly356Arg), p.(Gly375Arg), p.(Asn449fs) and p.(Ile663Val) abolished the …

MaleAtaxiaGenotypeDevelopmental DisabilitiesMutation MissenseBiology03 medical and health sciences0302 clinical medicineNeurodevelopmental disorderProtein DomainsLoss of Function MutationGeneticsmedicineHumansMissense mutationAbnormalities MultipleGenetic Predisposition to DiseaseProtein Interaction Domains and MotifsAlleleLarge-Conductance Calcium-Activated Potassium Channel alpha SubunitsMolecular BiologyAllelesGenetic Association StudiesGenetics (clinical)Loss functionExome sequencing030304 developmental biologyGenetics0303 health sciencesInfant NewbornGeneral MedicineParoxysmal dyskinesiamedicine.diseaseElectrophysiological PhenomenaPedigreePhenotypeAmino Acid SubstitutionSpeech delayFemaleGeneral Articlemedicine.symptom030217 neurology & neurosurgeryHuman Molecular Genetics
researchProduct

DLG4-related synaptopathy: a new rare brain disorder

2021

Contains fulltext : 245031.pdf (Publisher’s version ) (Closed access) PURPOSE: Postsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants. METHODS: The clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing. RESULTS: The clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit-hyp…

0301 basic medicineAutism Spectrum Disorder[SDV]Life Sciences [q-bio]030105 genetics & heredityBiology03 medical and health sciencesIntellectual DisabilityIntellectual disabilitymedicineMissense mutationHumansGlobal developmental delayExomeGenetics (clinical)GeneticsBrain DiseasesNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]Brainmedicine.disease030104 developmental biologyPhenotypeRenal disorders Radboud Institute for Molecular Life Sciences [Radboudumc 11]Autism spectrum disorderNeurodevelopmental DisordersSynaptopathyDLG4Postsynaptic densityDisks Large Homolog 4 Protein
researchProduct