Diffusive energy growth in classical and quantum driven oscillators
We study the long-time stability of oscillators driven by time-dependent forces originating from dynamical systems with varying degrees of randomness. The asymptotic energy growth is related to ergodic properties of the dynamical system: when the autocorrelation of the force decays sufficiently fast one typically obtains linear diffusive growth of the energy. For a system with good mixing properties we obtain a stronger result in the form of a central limit theorem. If the autocorrelation decays slowly or does not decay, the behavior can depend on subtle properties of the particular model. We study this dependence in detail for a family of quasiperiodic forces. The solution involves the ana…