0000000001103551

AUTHOR

Thomas Ulas

Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1.

How dying tumor cells get noticed Besides killing tumor cells directly, some chemotherapies, such as anthracyclines, also activate the immune system to kill tumors. Vacchelli et al. discovered that in mice, anthracycline-induced antitumor immunity requires immune cells to express the protein formyl peptide receptor 1 (FPR1). Dendritic cells (DCs) near tumors expressed especially high amounts of FPR1. DCs normally capture fragments of dying tumor cells and use them to activate nearby T cells to kill tumors, but DCs lacking FPR1 failed to do this effectively. Individuals with breast or colon cancer expressing a variant of FPR1 and treated with anthracyclines showed poor metastasis-free and ov…

research product

Enzymatic Activity of HPGD in Treg Cells Suppresses Tconv Cells to Maintain Adipose Tissue Homeostasis and Prevent Metabolic Dysfunction.

Summary Regulatory T cells (Treg cells) are important for preventing autoimmunity and maintaining tissue homeostasis, but whether Treg cells can adopt tissue- or immune-context-specific suppressive mechanisms is unclear. Here, we found that the enzyme hydroxyprostaglandin dehydrogenase (HPGD), which catabolizes prostaglandin E2 (PGE2) into the metabolite 15-keto PGE2, was highly expressed in Treg cells, particularly those in visceral adipose tissue (VAT). Nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ)-induced HPGD expression in VAT Treg cells, and consequential Treg-cell-mediated generation of 15-keto PGE2 suppressed conventional T cell activation and proliferation. C…

research product