0000000001104669

AUTHOR

Raluca Eftimie

Non-local multiscale approach for the impact of go or grow hypothesis on tumour-viruses interactions

International audience; We propose and study computationally a novel non-local multiscale moving boundary mathematical model for tumour and oncolytic virus (OV) interactions when we consider the go or grow hypothesis for cancer dynamics. This spatio-temporal model focuses on two cancer cell phenotypes that can be infected with the OV or remain uninfected, and which can either move in response to the extracellular-matrix (ECM) density or proliferate. The interactions between cancer cells, those among cancer cells and ECM, and those among cells and OV occur at the macroscale. At the micro-scale, we focus on the interactions between cells and matrix degrading enzymes (MDEs) that impact the mov…

research product

Modelling Keloids Dynamics: A Brief Review and New Mathematical Perspectives

The keloids are fibroproliferative disorders described by an excessive growth of fibrotic tissue, which also invades adjacent areas (beyond the original wound borders). Since these disorders are specific to humans (no other animal species naturally develop keloid-like tissue), the experimental in vivo/in vitro research has not lead to significant advances in this field. One possible approach could be to combine in vitro human models with calibrated in silico mathematical approaches (i.e., models and simulations) to generate new testable biological hypotheses related to biological mechanisms and improved treatments. Since these combined approaches do not really exist for keloid disorders, in…

research product

Mathematical investigation of innate immune responses to lung cancer: The role of macrophages with mixed phenotypes

Abstract Macrophages’ role in the evolution of solid tumours is a well accepted fact, with the M1-like macrophages having an anti-tumour role and the M2-like macrophages having a pro-tumour role. Despite the fact that some clinical studies on lung tumours have emphasised also the presence of macrophages with mixed M1 and M2 phenotypes in addition to macrophages with distinct phenotypes, the majority of studies still use the distinct M1-M2 classification to predict the evolution of tumours and patient survival. In this theoretical study we use a mathematical modelling and computational approach to investigate the role of macrophages with mixed phenotype on growth/control/elimination of lung …

research product

Collective Cell Migration in a Fibrous Environment: A Hybrid Multiscale Modelling Approach

International audience; The specific structure of the extracellular matrix (ECM), and in particular the density and orientation of collagen fibres, plays an important role in the evolution of solid cancers. While many experimental studies discussed the role of ECM in individual and collective cell migration, there are still unanswered questions about the impact of nonlocal cell sensing of other cells on the overall shape of tumour aggregation and its migration type. There are also unanswered questions about the migration and spread of tumour that arises at the boundary between different tissues with different collagen fibre orientations. To address these questions, in this study we develop …

research product