0000000001105502

AUTHOR

M. J. Schneider

Model of partial crystallization and melting derived from small-angle X-ray scattering and electron microscopic studies on low-density polyethylene

A temperature-dependent small-angle x-ray scattering and electron microscopic study on a sample of low-density polyethylene affords a determination of the structure changes in a heating and cooling cycle and suggests a new model of partial crystallization and melting. The analysis of SAXS data is based upon some general properties of the electron-density correlation function. Electron micrographs are obtained from stained sections γ irradiated at elevated temperatures and are analyzed quantitatively by statistical means. According to the model proposed here the thickness distribution in the amorphous layers, rather than that of the crystalline regions, is the essential factor governing the …

research product

Direct evaluation of the electron density correlation function of partially crystalline polymers

A discussion of the general properties of the one-dimensional electron density correlation function K(z) of a partially crystalline polymer with lamellar structure shows that application of a graphical extrapolation procedure permits direct determination of the crystallinity, the specific inner surface, and the electron density difference ηc − ηa. The procedure is based upon the occurrence of a straight section in the “self-correlation” range of K(z). Curved and nonparallel lamellae do not invalidate the concept. In the case of heterogeneous samples composed of partially crystalline and totally amorphous regions, some of the parameters of the experimentally obtained correlation function, as…

research product