0000000001107482

AUTHOR

Teresa Russo

0000-0001-9426-9542

showing 1 related works from this author

Collagen-low molecular weight hyaluronic acid semi-interpenetrating network loaded with gelatin microspheres for cell and growth factor delivery for …

2015

Intervertebral disc (IVD) degeneration is one of the main causes of low back pain. Current surgical treatments are complex and generally do not fully restore spine mobility. Development of injectable extracellular matrix-based hydrogels offers an opportunity for minimally invasive treatment of IVD degeneration. Here we analyze a specific formulation of collagen-low molecular weight hyaluronic acid (LMW HA) semi-interpenetrating network (semi-IPN) loaded with gelatin microspheres as a potential material for tissue engineering of the inner part of the IVD, the nucleus pulposus (NP). The material displayed a gel-like behavior, it was easily injectable as demonstrated by suitable tests and did …

MaleMaterials scienceBiomedical EngineeringMice SCIDMesenchymal Stem Cell TransplantationBiochemistryChondrocyteInjectionsBiomaterialsExtracellular matrixchemistry.chemical_compoundTransforming Growth Factor beta3Tissue engineeringImplants ExperimentalElastic ModulusHyaluronic acidmedicineAnimalsHumansRegenerationHyaluronic AcidIntervertebral DiscMolecular BiologyMesenchymal stem cellViscosityRegeneration (biology)Mesenchymal stem cellMesenchymal Stem CellsGeneral MedicineChondrocyteChondrogenesisMicrospheresMolecular WeightHydrogelmedicine.anatomical_structurechemistrySelf-healing hydrogelsGelatinCollagenRheologyChondrogenesisBiotechnologyBiomedical engineeringActa biomaterialia
researchProduct