Geometry and arithmetic of Maschke's Calabi-Yau three-fold
Maschke's Calabi-Yau three-fold is the double cover of projective three space branched along Maschke's octic surface. This surface is defined by the lowest degree invariant of a certain finite group acting on a four-dimensional (4D) vector space. Using this group, we show that the middle Betti cohomology group of the three-fold decomposes into the direct sum of 150 2D Hodge substructures. We exhibit 1D families of rational curves on the three-fold and verify that the associated Abel-Jacobi map is non-trivial. By counting the number of points over finite fields, we determine the rank of the Neron-Severi group of Maschke's surface and the Galois representation on the transcendental lattice of…