0000000001107684

AUTHOR

Philippe Velha

showing 2 related works from this author

Extraordinary tuning of a nanocavity by a near-field probe

2011

Abstract We report here an experimental observation of an extraordinary near-field interaction between a local probe and a small-volume solid-state nanocavity. We directly compare the normally observed near-field interaction regime driven by the perturbation theory and then report the extraordinary interaction regime. Subsequently, we show that the cavity can take up to 2 min to recover from this interaction after removing the probe and that leads to an extraordinary blue-shift of the cavity resonance wavelength (∼15 nm) which depends on the probe motion above the cavity and not the position. The reasons for this effect are not fully understood yet but we try to give some explanations.

Anomalous regimeSilicon photonicsPhysics::OpticsNear and far fieldNear-field opticsTuningPhotonic crystalsOpticsPosition (vector)Atomic and Molecular PhysicsElectronicNanotechnologyOptical and Magnetic MaterialsPerturbation theoryExtraordinary regimeElectrical and Electronic EngineeringOptomechanicsComputingMilieux_MISCELLANEOUSPhotonic crystalPhysicsSilicon photonicsbusiness.industryNear-field opticsCondensed Matter PhysicsAtomic and Molecular Physics and OpticsOptomechanicsElectronic Optical and Magnetic MaterialsWavelengthHardware and ArchitectureQuantum electrodynamicsAnomalous regime; Extraordinary regime; Microcavity; Nanotechnology; Near-field optics; Optomechanics; Photonic crystals; Silicon photonics; Tuning; Electronic Optical and Magnetic Materials; Atomic and Molecular Physics and Optics; Condensed Matter Physics; Hardware and Architecture; Electrical and Electronic Engineeringand OpticsbusinessMicrocavity
researchProduct

A near-field actuated optical nanocavity

2008

International audience; We demonstrate here that switching and tuning of a nanocavity resonance can be achieved by approaching a sub-micrometer tip inside its evanescent near-field. The resonance energy is tuned over a wide spectral range (Δλ/λ~10-3) without significant deterioration of the cavity peak-transmittance and of the resonance linewidth. Such a result is achieved by taking benefits from a weak tip-cavity interaction regime in which the tip behaves as a pure optical path length modulator.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Optics and PhotonicsMaterials science[SPI.OPTI] Engineering Sciences [physics]/Optics / PhotonicTransducersPhysics::OpticsNear and far field02 engineering and technology01 natural sciences010309 opticsLaser linewidthOpticsAtomic and Molecular Physics0103 physical sciencesNanotechnologyOptical path lengthComputingMilieux_MISCELLANEOUSRange (particle radiation)[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryNear-field opticsPhotonic integrated circuitResonanceEquipment Design021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsEquipment Failure AnalysisTransducer[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronics[ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonicand Optics0210 nano-technologybusiness
researchProduct