0000000001108796
AUTHOR
S. Kegel
Quasi-elastic polarization-transfer measurements on the deuteron in anti-parallel kinematics
We present measurements of the polarization-transfer components in the H2(e→,e′p→) reaction, covering a previously unexplored kinematic region with large positive (anti-parallel) missing momentum, pmiss, up to 220MeV/c, and Q2=0.65 (GeV/c)2. These measurements, performed at the Mainz Microtron (MAMI), were motivated by theoretical calculations which predict small final-state interaction (FSI) effects in these kinematics, making them favorable for searching for medium modifications of bound nucleons in nuclei. We find in this kinematic region that the measured polarization-transfer components Px and Pz and their ratio agree with the theoretical calculations, which use free-proton form factor…
Measurement of the Generalized Polarizabilities of the Proton at Intermediate $Q^2$
Background: Generalized polarizabilities (GPs) are important observables to describe the nucleon structure, and measurements of these observables are still scarce. Purpose: This paper presents details of a virtual Compton scattering (VCS) experiment, performed at the A1 setup at the Mainz Microtron by studying the $e p \to e p \gamma$ reaction. The article focuses on selected aspects of the analysis. Method: The experiment extracted the $P_{LL} -P_{TT} / \epsilon$ and $P_{LT}$ structure functions, as well as the electric and magnetic GPs of the proton, at three new values of the four-momentum transfer squared $Q^2$: 0.10, 0.20 and 0.45 GeV$^2$. Results: We emphasize the importance of the ca…
Beam-normal single spin asymmetry in elastic electron scattering off 28Si and 90Zr
We report on a new measurement of the beam-normal single spin asymmetry $A_{\mathrm{n}}$ in the elastic scattering of 570 MeV transversely polarized electrons off $^{28}$Si and $^{90}$Zr at $Q^{2}=0.04\, \mathrm{GeV}^2/c^2$. The studied kinematics allow for a comprehensive comparison with former results on $^{12}$C. No significant mass dependence of the beam-normal single spin asymmetry is observed in the mass regime from $^{12}$C to $^{90}$Zr.
Search at the Mainz Microtron for light massive gauge bosons relevant for the muon g-2 anomaly.
A massive, but light, Abelian U(1) gauge boson is a well-motivated possible signature of physics beyond the standard model of particle physics. In this Letter, the search for the signal of such a U(1) gauge boson in electron-positron pair production at the spectrometer setup of the A1 Collaboration at the Mainz Microtron is described. Exclusion limits in the mass range of 40 MeV/c^{2} to 300 MeV/c^{2}, with a sensitivity in the squared mixing parameter of as little as ε^{2}=8×10^{-7} are presented. A large fraction of the parameter space has been excluded where the discrepancy of the measured anomalous magnetic moment of the muon with theory might be explained by an additional U(1) gauge …
Measurements of the induced polarization in the quasi-elastic A(e,e′p→) process in non-coplanar kinematics
Abstract We report measurements of the induced polarization P → of protons knocked out from 2H and 12C via the A ( e , e ′ p → ) reaction. We have studied the dependence of P → on two kinematic variables: the missing momentum p miss and the “off-coplanarity” angle ϕ p q between the scattering and reaction planes. For the full 360° range in ϕ p q , both the normal ( P y ) and, for the first time, the transverse ( P x ) components of the induced polarization were measured with respect to the coordinate system associated with the scattering plane. P x vanishes in coplanar kinematics, however in non-coplanar kinematics, it is on the same scale as P y . We find that the dependence on ϕ p q is si…
Measurements of the electron-helicity asymmetry in the quasi-elastic A(e→,e′p) process
Abstract We present measurements of the electron helicity asymmetry in quasi-elastic proton knockout from 2H and 12C nuclei by polarized electrons. This asymmetry depends on the fifth structure function, is antisymmetric with respect to the scattering plane, and vanishes in the absence of final-state interactions, and thus it provides a sensitive tool for their study. Our kinematics cover the full range in off-coplanarity angle ϕ p q , with a polar angle θ p q coverage up to about 8°. The missing energy resolution enabled us to determine the asymmetries for knock-out resulting in different states of the residual 11B system. We find that the helicity asymmetry for p-shell knockout from 12C d…
First measurement of proton's charge form factor at very low $Q^2$ with initial state radiation
We report on a new experimental method based on initial-state radiation (ISR) in e-p scattering, in which the radiative tail of the elastic e-p peak contains information on the proton charge form factor ($G_E^p$) at extremely small $Q^2$. The ISR technique was validated in a dedicated experiment using the spectrometers of the A1-Collaboration at the Mainz Microtron (MAMI). This provided first measurements of $G_E^p$ for $0.001\leq Q^2\leq 0.004 (GeV/c)^2$.
Ground-state binding energy of HΛ4 from high-resolution decay-pion spectroscopy
Abstract A systematic study on the Λ ground state binding energy of hyperhydrogen H Λ 4 measured at the Mainz Microtron MAMI is presented. The energy was deduced from the spectroscopy of mono-energetic pions from the two-body decays of hyperfragments, which were produced and stopped in a 9Be target. First data, taken in the year 2012 with a high resolution magnetic spectrometer, demonstrated an almost one order of magnitude higher precision than emulsion data, while being limited by systematic uncertainties. In 2014 an extended measurement campaign was performed with improved control over systematic effects, increasing the yield of hypernuclei and confirming the observation with two indepen…
Comparison of recoil polarization in the C12(e→,e′p→) process for protons extracted from s and p shells
Abstract We present the first measurements of the double ratio of the polarization-transfer components ( P x ′ / P z ′ ) p / ( P x ′ / P z ′ ) s for knock-out protons from the s and p shells in C 12 measured by the C 12 ( e → , e ′ p → ) reaction in quasi-elastic kinematics. The data are compared to theoretical predictions in the relativistic distorted-wave impulse approximation. Our results show that the differences between s- and p-shell protons, observed when compared at the same initial momentum (missing momentum), largely disappear when the comparison is done at the same proton virtuality. We observe no difference in medium modifications between protons from the s and p shells with the…
New Insight in the $Q^2$-Dependence of Proton Generalized Polarizabilities
Virtual Compton scattering on the proton has been investigated at three yet unexplored values of the four-momentum transfer $Q^2$: 0.10, 0.20 and 0.45 GeV$^2$, at the Mainz Microtron. Fits performed using either the low-energy theorem or dispersion relations allowed the extraction of the structure functions $P_{LL} -P_{TT} / \epsilon$ and $P_{LT}$, as well as the electric and magnetic generalized polarizabilities $\alpha_{E1}(Q^2)$ and $\beta_{M1}(Q^2)$. These new results show a smooth and rapid fall-off of $\alpha_{E1}(Q^2)$, in contrast to previous measurements at $Q^2$ = 0.33 GeV$^2$, and provide for the first time a precise mapping of $\beta_{M1}(Q^2)$ in the low-$Q^2$ region.
Operation and characterization of a windowless gas jet target in high-intensity electron beams
Abstract A cryogenic supersonic gas jet target was developed for the MAGIX experiment at the high-intensity electron accelerator MESA. It will be operated as an internal, windowless target in the energy-recovering recirculation arc of the accelerator with different target gases, e.g., hydrogen, deuterium , helium, oxygen, argon, or xenon. Detailed studies have been carried out at the existing A1 multi-spectrometer facility at the electron accelerator MAMI. This paper focuses on the developed handling procedures and diagnostic tools, and on the performance of the gas jet target under beam conditions. Considering the special features of this type of target, it proves to be well suited for a n…
Experimental investigations of the hypernucleus $_Λ^4$H
International audience; Negatively charged pions from two-body decays of stopped _Lambda^4H hypernuclei were studied in 2012 at the Mainz Microtron MAMI, Germany. The momenta of the decay-pions were measured with unprecedented precision by using high-resolution magnetic spectrometers. A challenge of the experiment was the tagging of kaons from associated K^+∧ production off a Be target at very forward angles. In the year 2014, this experiment was continued with a better control of the systematic uncertainties, with better suppression of coincident and random background, improved particle identification, and with higher luminosities. Another key point of the progress was the improvemen…
Vertical Beam Polarization at MAMI
For the first time a vertically polarized electron beam has been used for physics experiments at MAMI in the energy range between 180 and 855 MeV. The beam-normal single-spin asymmetry $A_{\mathrm{n}}$, which is a direct probe of higher-order photon exchange beyond the first Born approximation, has been measured in the reaction $^{12}\mathrm C(\vec e,e')^{12}\mathrm C$. Vertical polarization orientation was necessary to measure this asymmetry with the existing experimental setup. In this paper we describe the procedure to orient the electron polarization vector vertically, and the concept of determining both its magnitude and orientation with the available setup. A sophisticated method has …
Beam-normal single spin asymmetry in elastic electron scattering off Si and Zr
We report on a new measurement of the beam-normal single spin asymmetry An in the elastic scattering of 570 MeV transversely polarized electrons off $^{28}$Si and $^{90}$Zr at Q2=0.04 GeV2/c2. The studied kinematics allow for a comprehensive comparison with former results on $^{12}$C. No significant mass dependence of the beam-normal single spin asymmetry is observed in the mass regime from $^{12}$C to $^{90}$Zr.
First Measurement of the $Q^2$ Dependence of the Beam-Normal Single Spin Asymmetry for Elastic Scattering off Carbon
We report on the first Q^{2}-dependent measurement of the beam-normal single spin asymmetry A_{n} in the elastic scattering of 570 MeV vertically polarized electrons off ^{12}C. We cover the Q^{2} range between 0.02 and 0.05 GeV^{2}/c^{2} and determine A_{n} at four different Q^{2} values. The experimental results are compared to a theoretical calculation that relates A_{n} to the imaginary part of the two-photon exchange amplitude. The result emphasizes that the Q^{2} behavior of A_{n} given by the ratio of the Compton to charge form factors cannot be treated independently of the target nucleus.
Deuteron form factor measurements at low momentum transfers
A precise measurement of the elastic electron-deuteron scattering cross section at four-momentum transfers of 0.24 fm−1 ≤ Q ≤ 2.7 fm−1 has been performed at the Mainz Microtron. In this paper we describe the utilized experimental setup and the necessary analysis procedure to precisely determine the deuteron charge form factor from these data. Finally, the deuteron charge radius rd can be extracted from an extrapolation of that form factor to Q 2 = 0.
Beam-Recoil Polarization Measurement of π0 Electroproduction on the Proton in the Region of the Roper Resonance
The helicity-dependent recoil proton polarizations P_{x}^{'} and P_{z}^{'} as well as the helicity-independent component P_{y} have been measured in the p(e[over →],e^{'}p[over →])π^{0} reaction at four-momentum transfer Q^{2}≃0.1 GeV^{2}, center-of-mass proton emission angle θ_{p}^{*}≃90°, and invariant mass W≃1440 MeV. This first precise measurement of double-polarization observables in the energy domain of the Roper resonance P_{11}(1440) by exploiting recoil polarimetry has allowed for the extraction of its scalar electroexcitation amplitude at an unprecedentedly low value of Q^{2}, establishing a powerful instrument for probing the interplay of quark and meson degrees of freedom in t…
Initial state radiation experiment at MAMI
In an attempt to contribute further insight into the discrepancy between the Lamb shift and elastic scattering determinations of the proton charge radius, a new experiment at MAMI is underway, aimed at measuring proton form-factors at very low momentum transfers by using a new technique based on initial state radiation. This paper reports on the conclusions of the pilot measurement performed in 2010, whose main goal was to check the feasibility of the proposed experiment and to recognize and overcome any obstacles before running the full experiment. The modifications to the experimental apparatus are then explained which significantly improved the quality of data collected in the full scale…